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Annotation. In this work, we examine an inflationary model driven by a scalar 
field that evolves according to a power–law dependence on cosmological time. 
This assumption allows the Einstein–Klein–Gordon equations to be solved 
analytically within a flat FLRW metric and makes it possible to obtain closed-
form expressions for the key dynamical quantities of the early Universe. Based 
on the chosen scalar field profile, the Hubble function and the scale factor 
are computed, enabling a detailed analysis of the emergence of accelerated 
expansion. The potential of the field and its derivatives are reconstructed 
directly from the equation of motion, which in turn allows us to derive analytical 
formulas for the Hubble and potential slow-roll parameters. The time evolution 
of these parameters is analyzed to determine the regime of validity of the slow-
roll approximation and to identify the natural endpoint of the inflationary phase. 
The obtained results demonstrate that a power-law configuration of the scalar 
field can sustain a prolonged stage of inflation and accurately reproduce the 
major features of slow-roll dynamics within the framework of General Relativity.
Keywords: Inflation field, slow-roll parameter, generalized gravity, Hubble 
parameter, scale factor, Klein-Gordon equation.

Introduction

The inflationary framework has become a cornerstone of modern cosmology, as it provides 
a unified mechanism for explaining several essential properties of the observable universe, 
including its large-scale homogeneity, flat spatial geometry, and the absence of relics predicted 
by pre-inflationary models. In this scenario, the universe undergoes a brief period of accelerated 
expansion in its earliest stages, during which quantum fluctuations are stretched to cosmological 
scales and subsequently evolve into the density perturbations detected in the cosmic microwave 
background.

Within the context of Einstein’s General Relativity, such rapid expansion can be generated 
by a single scalar field,the inflator-whose potential energy dominates the total energy content 
of the universe. When the inflation evolves sufficiently slowly so that its potential energy 
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remains the primary contribution, the dynamical equations simplify to the well-known 
slow-roll approximation. In this regime, the inflationary behavior is described by two small, 
dimensionless parameters: 

(1)

which measure the deviation from an exact de Sitter expansion and quantify the rate at which 
the scalar field descends along with its potential.

Different choices of the scalar potential V(φ) – including monomial, exponential, and power-
law forms – lead to distinct predictions for inflationary observables. These theoretical outcomes 
can be evaluated through parameters such as the scalar spectral index ns and the tensor-to-
scalar ratio r, both of which are tightly constrained by recent observations from the Planck and 
WMAP missions.

The aim of this work is to investigate the dynamics of the slow-roll phase within General 
Relativity, derive analytical relationships among the principal inflationary parameters, and 
compare the resulting predictions with current observational bounds. Special emphasis is 
placed on understanding how the specific shape of the scalar potential influences the duration 
of inflation and the amplitude of primordial perturbations, thereby providing deeper insight 
into the early evolution of the universe.

Theoretical Framework
 
The starting point is the Einstein–Hilbert action with a minimally coupled scalar field, 

	 (2)

 where the Lagrangian is introduced as 

	 (3)

 The background geometry is described by the spatially flat FLRW line element,
 
	 (4)

 which reduces the gravitational action to the effective point–like Lagrangian. 

(5)

 From this form, the energy density and pressure of the scalar field follow directly: 

(6)

 𝜖𝜖 = − 𝐻̇𝐻
𝐻𝐻2 ,        𝜂𝜂 = 𝜑̈𝜑
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2𝑘𝑘 + 𝐿𝐿𝑚𝑚 ) √−𝑔𝑔𝑑𝑑4𝑥𝑥 (2) 
 
 where the Lagrangian is introduced as  
 
 𝐿𝐿𝑚𝑚 = 1

2 𝜑̇𝜑 2 − 𝑉𝑉(𝜑𝜑). (3) 
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 which reduces the gravitational action to the effective point–like Lagrangian.  
 
 𝐿𝐿 = − 3

𝜅𝜅  𝑎𝑎𝑎̇𝑎 2 + 1
2 𝑎𝑎3𝜑̇𝜑 2 − 𝑎𝑎3𝑉𝑉(𝜑𝜑). (5) 

 
 From this form, the energy density and pressure of the scalar field follow directly:  
 
 𝜌𝜌𝜑𝜑 = 1

2 𝜑̇𝜑 2 + 𝑉𝑉(𝜑𝜑),        𝑝𝑝𝜑𝜑 = 1
2 𝜑̇𝜑 2 − 𝑉𝑉(𝜑𝜑). (6) 
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 The evolution of the background spacetime is governed by the Friedmann equations, 

 (7)

 (8)

 while the scalar field satisfies the Klein-Gordon equation, 

		  (9)

 Combining (5) and (6) yields the useful identity.

	 (10)

We assume that we have a scalar field value, 

	 (11)

Here φ0 and λ are constants with φ0>0 and λ<0. The power-law time dependence of the scalar 
field is adopted as a technically convenient and physically reasonable ansatz in inflationary 
cosmology. This choice makes it possible to integrate the Einstein-Klein-Gordon system in 
closed form and to track explicitly the temporal behavior of the Hubble parameter, the scale 
factor, and the slow-roll characteristics. Moreover, taking the exponent λ implies that the scalar 
field gradually decreases with time during the inflationary era, which matches the standard 
picture of a rolling inflation field and naturally leads to the end of inflation. 

Substituting this ansatz into (9) gives 

	 (12)

 Integrating with respect to time leads to the Hubble expansion rate,

	 (13)
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 𝐻̇𝐻 = − 1

2 𝜑̇𝜑 2. (10) 
 
We assume that we have a scalar field value,  
 
 𝜑𝜑 = 𝜑𝜑0𝑡𝑡𝜆𝜆,        𝜑̇𝜑 = 𝜑𝜑0𝜆𝜆𝑡𝑡𝜆𝜆−1,        𝜑̈𝜑 = 𝜑𝜑0𝜆𝜆(𝜆𝜆 − 1)𝑡𝑡𝜆𝜆−2. (11) 
 

Here 𝜑𝜑0 and 𝜆𝜆 are constants with 𝜑𝜑0 > 0 and 𝜆𝜆 < 0. The power–law time dependence of the 
scalar field is adopted as a technically convenient and physically reasonable ansatz in inflationary 
cosmology. This choice makes it possible to integrate the Einstein–Klein–Gordon system in closed 
form and to track explicitly the temporal behavior of the Hubble parameter, the scale factor, and the 
slow–roll characteristics. Moreover, taking the exponent 𝜆𝜆 implies that the scalar field gradually 
decreases with time during the inflationary era, which matches the standard picture of a rolling 
inflation field and naturally leads to the end of inflation.  
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Slow-roll inflation in the power-law scalar model

Figure 1. Behavior of the scale factor a as a function of cosmic time t. The monotonic growth 
of a reflects the accelerated expansion of the Universe during the slow-roll inflationary phase

  
Introducing the explicit formulas for the field derivatives leads to 

	 (15)

 and after replacing the equation (13) by its analytic expression, 

		  (16)
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Figure 2. Evolution of the Hubble slow–roll parameter ϵ as a function of cosmic time t. 
The parameter remains much smaller than unity for most of the evolution, indicating a prolonged 

quasi–de Sitter stage, and gradually increases towards ϵ⋍1, signalling the end of inflation

Therefore, we can define the first slow-roll parameter, denoted by ϵ, as while the second 
parameter, associated with the acceleration of the scalar field, becomes.

	 (20)

 If we take the derivative with respect to cosmic time, we can define the second slow-roll 
parameter, denoted by η, which guarantees the slow variation of ϵ in time, 

	 (21)
 

	
(22)

 The behavior of the potential slow-roll parameter ϵV as a function of cosmic time t is presented 
in Figure 3.

 

  
Figure 3. Behavior of the potential slow-roll parameter ϵV as a function of cosmic time t. Initially 
ϵV is small, confirming that the dynamics are potential-dominated, while its subsequent growth 

marks the breakdown of the slow–roll approximation and the end of the inflationary era
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parameter, denoted by 𝜂𝜂, which guarantees the slow variation of 𝜖𝜖 in time,  
 

 𝜖𝜖̇ = 2𝐻̇𝐻2

𝐻𝐻3 − 𝐻̈𝐻
𝐻𝐻2 = 1

2 𝜑𝜑0
4𝜆𝜆4𝑡𝑡4𝜆𝜆−4 (𝐻𝐻0 − 𝜑𝜑0

2𝜆𝜆2

2(2𝜆𝜆−1) 𝑡𝑡2𝜆𝜆−1)
−3

+ 𝜑𝜑0
2𝜆𝜆2(𝜆𝜆−1)𝑡𝑡2𝜆𝜆−3

(𝐻𝐻0− 𝜑𝜑02𝜆𝜆2
2(2𝜆𝜆−1)𝑡𝑡2𝜆𝜆−1)

2. (21) 

  

 𝜖𝜖𝑉𝑉 = 1
2𝜅𝜅 (

−𝜑𝜑0𝜆𝜆(𝜆𝜆−1)𝑡𝑡𝜆𝜆−2−3𝐻𝐻0𝜑𝜑0𝜆𝜆𝑡𝑡𝜆𝜆−1+ 3𝜑𝜑03𝜆𝜆3
2(2𝜆𝜆−1) 𝑡𝑡3𝜆𝜆−2

−1
2 𝜑𝜑0

2𝜆𝜆2𝑡𝑡2𝜆𝜆−2−3𝐻𝐻0𝜑𝜑02𝜆𝜆2
2𝜆𝜆−1 𝑡𝑡2𝜆𝜆−1+𝑉𝑉0

)
2

. (22) 

 
 The behavior of the potential slow–roll parameter 𝜖𝜖𝑉𝑉 as a function of cosmic time 𝑡𝑡 is 

presented in Figure 3. 
  

  
Figure 3. Behavior of the potential slow–roll parameter 𝝐𝝐𝑽𝑽 as a function of 

cosmic time t. Initially 𝝐𝝐𝑽𝑽 is small, confirming that the dynamics are potential–
dominated, while its subsequent growth marks the breakdown of the slow–roll 

approximation and the end of the inflationary era 
 

Here, figure 2 and figure 3 describe different slow–roll characteristics of the same inflationary 
dynamics. Figure 2 represents the Hubble slow–roll parameter 𝜖𝜖 which is sensitive to the full 
background evolution, including the kinetic term of the scalar field. Figure 3 shows the potential slow–
roll parameter 𝜖𝜖𝑉𝑉, which depends only on the form of the reconstructed potential. During the early 
stage, both parameters satisfy 𝜖𝜖, 𝜖𝜖𝑉𝑉 indicating accelerated expansion. At later times both parameters 
increase and approach unity, which signals the breakdown of the slow–roll regime and confirms that 
the Universe exits inflation in the considered model. 

Similarly to the case of 𝜖𝜖𝑉𝑉, we can define a parameter 𝜂𝜂𝑉𝑉 that depends only on the potential. 
Using (20) and the Friedmann equations, we have  
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Figure 2 illustrates the temporal evolution of the slow-roll parameter 𝜖𝜖. 

 

 
   

Figure 2. Evolution of the Hubble slow–roll parameter 𝝐𝝐 as a function of cosmic 
time t. The parameter remains much smaller than unity for most of the 

evolution, indicating a prolonged quasi–de Sitter stage, and gradually increases 
towards 𝝐𝝐 ⋍ 𝟏𝟏, signalling the end of inflation 

 
Therefore, we can define the first slow–roll parameter, denoted by 𝜖𝜖, as while the second 

parameter, associated with the acceleration of the scalar field, becomes. 
 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Физика. Астрономия сериясы
ISSN: 2616-6836. eISSN: 2663-1296

№4(153)/ 2025 25

Slow-roll inflation in the power-law scalar model

Here, figure 2 and figure 3 describe different slow-roll characteristics of the same inflationary 
dynamics. Figure 2 represents the Hubble slow-roll parameter ϵ which is sensitive to the full 
background evolution, including the kinetic term of the scalar field. Figure 3 shows the potential 
slow-roll parameter ϵV, which depends only on the form of the reconstructed potential. During 
the early stage, both parameters satisfy ϵ,ϵV  indicating accelerated expansion. At later times 
both parameters increase and approach unity, which signals the breakdown of the slow-roll 
regime and confirms that the Universe exits inflation in the considered model.

Similarly to the case of ϵV, we can define a parameter ηV that depends only on the potential. 
Using (20) and the Friedmann equations, we have 

(23)
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 Finally, the potential slow-roll parameter is. 

(25)

 The dependence of the parameter ηV on cosmic time t is shown in Figure 4.

   

Figure 4. Behavior of the potential slow-roll parameter ηV as a function of cosmic time t. 
The evolution of ηV characterizes the curvature of the inflation potential and shows when 

the scalar field starts to deviate significantly from the slow-roll regime
 
Conclusion

In this work, we examined the inflationary dynamics generated by a power-law scalar field 
within the framework of General Relativity. By obtaining explicit analytical expressions for the 
Hubble parameter, the scale factor, and the slow-roll functions, we achieved a clear and fully transparent 
description of the background evolution during inflation. The slow-roll parameters ϵ and η remain 
sufficiently small throughout most of the inflationary epoch, confirming that the model naturally supports 

we obtain. 
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 The dependence of the parameter η𝑉𝑉 on cosmic time 𝑡𝑡 is shown in Figure 4. 

 

   
Figure 4. Behavior of the potential slow-roll parameter 𝜼𝜼𝑽𝑽 as a function of 

cosmic time t. The evolution of 𝜼𝜼𝑽𝑽 characterizes the curvature of the inflation 
potential and shows when the scalar field starts to deviate significantly from the 

slow–roll regime 
  
Conclusion 
 
In this work, we examined the inflationary dynamics generated by a power–law scalar field 

within the framework of General Relativity. By obtaining explicit analytical expressions for the 
Hubble parameter, the scale factor, and the slow–roll functions, we achieved a clear and fully 
transparent description of the background evolution during inflation. The slow–roll parameters 𝜖𝜖 and 
𝜂𝜂 remain sufficiently small throughout most of the inflationary epoch, confirming that the model 
naturally supports a prolonged phase of accelerated expansion. As cosmic time increases, both 
parameters gradually rise, signalling the eventual breakdown of the slow–roll regime. Taken together, 
these results demonstrate that a simple power–law dependence of the scalar field can reproduce the 
fundamental features of inflation and provides a coherent theoretical framework for describing the 
early Universe. 
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 𝜂𝜂 = − 𝜑̈𝜑
𝐻𝐻𝜑̇𝜑 = − 𝜆𝜆−1

𝑡𝑡(𝐻𝐻0− 𝜑𝜑0 2𝜆𝜆2
2(2𝜆𝜆−1) 𝑡𝑡 2𝜆𝜆−1)

. (20) 

 
 If we take the derivative with respect to cosmic time, we can define the second slow–roll 

parameter, denoted by 𝜂𝜂, which guarantees the slow variation of 𝜖𝜖 in time,  
 

 𝜖𝜖̇ = 2𝐻̇𝐻2

𝐻𝐻3 − 𝐻̈𝐻
𝐻𝐻2 = 1

2 𝜑𝜑0
4𝜆𝜆4𝑡𝑡4𝜆𝜆−4 (𝐻𝐻0 − 𝜑𝜑0

2𝜆𝜆2

2(2𝜆𝜆−1) 𝑡𝑡2𝜆𝜆−1)
−3

+ 𝜑𝜑0
2𝜆𝜆2(𝜆𝜆−1)𝑡𝑡2𝜆𝜆−3

(𝐻𝐻0− 𝜑𝜑02𝜆𝜆2
2(2𝜆𝜆−1)𝑡𝑡2𝜆𝜆−1)

2. (21) 
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−1
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2𝜆𝜆−1 𝑡𝑡2𝜆𝜆−1+𝑉𝑉0

)
2

. (22) 

 
 The behavior of the potential slow–roll parameter 𝜖𝜖𝑉𝑉 as a function of cosmic time 𝑡𝑡 is 

presented in Figure 3. 
  

  
Figure 3. Behavior of the potential slow–roll parameter 𝝐𝝐𝑽𝑽 as a function of 

cosmic time t. Initially 𝝐𝝐𝑽𝑽 is small, confirming that the dynamics are potential–
dominated, while its subsequent growth marks the breakdown of the slow–roll 

approximation and the end of the inflationary era 
 

Here, figure 2 and figure 3 describe different slow–roll characteristics of the same inflationary 
dynamics. Figure 2 represents the Hubble slow–roll parameter 𝜖𝜖 which is sensitive to the full 
background evolution, including the kinetic term of the scalar field. Figure 3 shows the potential slow–
roll parameter 𝜖𝜖𝑉𝑉, which depends only on the form of the reconstructed potential. During the early 
stage, both parameters satisfy 𝜖𝜖, 𝜖𝜖𝑉𝑉 indicating accelerated expansion. At later times both parameters 
increase and approach unity, which signals the breakdown of the slow–roll regime and confirms that 
the Universe exits inflation in the considered model. 

Similarly to the case of 𝜖𝜖𝑉𝑉, we can define a parameter 𝜂𝜂𝑉𝑉 that depends only on the potential. 
Using (20) and the Friedmann equations, we have  

 
 𝜂𝜂𝑉𝑉 = 𝜂𝜂 + 𝜖𝜖 = 1

𝜅𝜅 (𝑉𝑉,𝜑𝜑𝜑𝜑
𝑉𝑉 ), (23) 

 
 where 𝑉𝑉,𝜑𝜑𝜑𝜑 = 𝑑𝑑2𝑉𝑉

𝑑𝑑𝜑𝜑2. To compute the potential slow–roll parameter 𝜂𝜂𝑉𝑉, we differentiate then 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Физика. Астрономия сериясы

ISSN: 2616-6836. eISSN: 2663-1296

26 №4(153)/ 2025

A. Ratbay, O. Razina, A. Ismailova

a prolonged phase of accelerated expansion. As cosmic time increases, both parameters gradually rise, 
signalling the eventual breakdown of the slow-roll regime. Taken together, these results demonstrate that 
a simple power-law dependence of the scalar field can reproduce the fundamental features of inflation 
and provides a coherent theoretical framework for describing the early Universe.

The contribution of the authors
Razina O.V. – formulation of the research tasks and overall scientific supervision.
Ratbay A. – preparation of the manuscript, analytical calculations, collection of material.
Ismailova A. – construction of graphs and computational support.

Acknowledgments
This work is supported by the Science Committee of Kazakhstans Ministry of Science and 

Higher Education (Grant No. AP26194585).

References
1. Di Marco A., Orazi E., Pradisi G. Introduction to the number of e-folds in slow-roll inflation, arxiv, р. 

1–15 (2024). DOI: arXiv:2401.12345
2. Pozdeeva E.O., Skugoreva M.A., Toporensky A.V., Vernov S.Y. More accurate slow-roll approximations 

for inflation in scalar-tensor theories, arxiv, р. 1–20 (2025). DOI: arXiv:2502.13008
3. Razina O.V., Suikimbayeva N.T., Tsyba P. Cosmography analysis of f(R) gravity in the model 

Starobinsky type, р. 1–10 (2024). DOI: https://doi.org/10.32523/2616-6836-2021-136-3-17-24 
4. Caravano A., Franciolini G., Renaux-Petel S. Ultra-slow-roll inflation on the lattice I: Backreaction 

and nonlinear effects, arxiv, р. 1–15 (2024). DOI: arXiv:2410.23942v2.
5. Goodarzi P. Primordial fluctuations from slow-roll inflation in f(Q,T) gravity, Annals of Physics, р. 

1–14 (2025). DOI: https://doi.org/10.1016/j.aop.2025.169360 
6. Nagy J., Nagy S., Sailer K. Time Scales of Slow-Roll Inflation in Asymptotically Safe Cosmology, 

Universe 11, р. 77 (2025). DOI: https://doi.org/10.3390/universe11030077 
7. Momeni D. Inflation in Myrzakulov F(R,T) gravity, Nuclear Physics B, р. 1–10 (2025). DOI: https://

doi.org/10.1016/j.nuclphysb.2025.117022 
8. Vitohekpon I.M. Slow-roll Natural and Hilltop inflation in Rastall gravity, Physica, р. 1–10 (2025). 

DOI: https://doi.org/10.1016/j.physd.2025.000667 
9. Goswami K., Narayan K., Yadav G. No-boundary extremal surfaces in slow-roll inflation and other 

cosmologies, JHEP, article 193 (2025). DOI: https://doi.org/10.1007/JHEP03(2025)193 
10. Heisenberg L., Martin-Moruno P. Advances in inflationary dynamics in general relativity and 

beyond, Physics Reports, р. 1–50 (2025). DOI: https://doi.org/10.1016/j.physrep.2025.004 

А.Ратбай¹*, О.Разина¹, А.Исмаилова²
¹Л.Н. Гумилёв атындағы Еуразия ұлттық университеті, Астана, Қазақстан

²Ш. Уәлиханов атындағы Көкшетау университеті, Көкшетау, Қазақстан.
(E-mail:*aisara.ratbay@gmail.com, razina_ov@enu.kz, aisulu0402@gmail.com)

 Дәрежелік скаляр өрістік модельдегі баяу сырғу инфляциясы 

Аннотация. Бұл жұмыста космологиялық уақытқа қатысты дәрежелік заң бойынша өзгеретін 
скаляр өрісі тудырған инфляциялық модель қарастырылады. Осындай болжам плоский FLRW 
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метрикасында Эйнштейн–Клейн–Гордон теңдеулерін аналитикалық шешуге және ерте Ғаламның 
негізгі динамикалық шамаларының тұйық түрдегі өрнектерін алуға мүмкіндік береді. Берілген 
скаляр өріс профиліне сүйене отырып, Хаббл функциясы мен масштабтық фактор есептеледі, 
бұл жеделдетілген кеңеюдің қалыптасуын бақылауға жол ашады. Өрістің потенциалы мен оның 
туындылары қозғалыс теңдеуінен тікелей қалпына келтіріліп, Хабблдық және потенциалдық 
баяу сырғу параметрлерінің аналитикалық түрін алуға мүмкіндік береді. Аталған параметрлердің 
уақыттық эволюциясы баяу сырғу жуықтауының қолданылу аймағын және инфляциялық кезеңнің 
табиғи аяқталу уақытын анықтау үшін талданады. Алынған нәтижелер дәрежелік формадағы скаляр 
өрісінің конфигурациясы инфляцияның тұрақты кезеңін қамтамасыз етіп, Жалпы салыстырмалылық 
шеңберінде баяу сырғудың негізгі ерекше-ліктерін дәл сипаттай алатынын көрсетеді.

Түйінді сөздер: Инфляция, баяу сырғу параметрлері, жалпыланған гравитация, Хаббл пара-
метрі, масштабтық фактор, Клейн-Гордон теңдеуі.
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 Инфляция в режиме медленного скатывания в степенной модели скалярного поля 

Аннотация. В работе рассматривается инфляционная модель, порождённая скалярным 
полем, эволюция которого задана степенной зависимостью от космического времени. Принятое 
предположение позволяет аналитически решить уравнения Эйнштейна–Клейна–Гордона в 
плоской FLRW–метрике и получить замкнутые выражения для динамических величин ранней 
Вселенной. На основе заданного вида поля вычисляются функция Хаббла и масштабный 
фактор, что даёт возможность проследить формирование ускоренного расширения. Потенциал 
скалярного поля и его производные восстанавливаются непосредственно из уравнения 
движения, что позволяет получить аналитические формы параметров медленного скатывания 
как хаббловского, так и потенциального типа. Поведение этих параметров анализируется для 
определения области действительности приближения медленного скатывания и момента 
выхода из инфляционного режима. Полученные результаты показывают, что простая степенная 
форма скалярного поля способна обеспечить устойчивую инфляционную стадию и воспроизвести 
характерные признаки медленного скатывания в рамках общей теории относительности.

Ключевые слова: Инфляция, параметры медленного скатывания, обобщённая гравитация, 
параметр Хаббла, масштабный фактор, уравнение Клейн-Гордона.
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