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Abstract. The present study focuses on the synthesis of ZnO nanostructures via 
an electrospinning-assisted technique, followed by calcination under carefully 
controlled thermal conditions. The electrospinning process resulted in the 
formation of continuous, uniform, and bead-free polymeric precursor fibers, 
with a noticeable reduction in average fiber diameter. This clearly demonstrates 
the influence of electrospinning parameters, such as applied voltage, solution 
concentration, and flow rate, on the resulting fiber morphology. Subsequent 
calcination not only removed the polymeric matrix but also induced the 
crystallization of ZnO, transforming the fibrous structure into well-defined 
nanoparticles. The crystallite size of the obtained ZnO was strongly dependent 
on the calcination temperature, with the smallest crystallites achieved under 
optimized thermal treatment, thereby offering a route to fine-tune the 
nanostructure dimensions. Elemental analysis by energy-dispersive X-ray 
spectroscopy (EDS) confirmed the exclusive presence of zinc and oxygen, 
verifying the high purity and compositional integrity of the synthesized 
material. Furthermore, X-ray diffraction (XRD) analysis revealed sharp and 
intense diffraction peaks corresponding solely to the hexagonal wurtzite 
phase of ZnO, with no evidence of secondary phases or impurities. These 
results collectively demonstrate that electrospinning, coupled with controlled 
calcination, provides a robust, cost-effective, and scalable approach for 
producing high-quality ZnO nanostructures with desirable structural and 
compositional features. Such nanostructures hold significant promise for 
diverse applications, including gas sensing.
Keywords: ZnO nanoparticles, electrospinning, calcination, nanostructured 
materials, polymeric matrix, crystallite size, hexagonal wurtzite

ФИЗИКА СЕРИЯСЫ/  PHYSICS  SERIES / СЕРИЯ ФИЗИКА

https://doi.org/10.32523/2616-6836-2025-153-4-41-51
https://orcid.org/0000-0002-0129-7876
https://orcid.org/0009-0005-0793-7802
https://orcid.org/0000-0003-1794-0018
https://orcid.org/0000-0002-7443-8561
https://orcid.org/0000-0001-9132-1173
https://orcid.org/0000-0002-5320-2576


Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Физика. Астрономия сериясы

ISSN: 2616-6836. eISSN: 2663-1296

42 №4(153)/ 2025

A. Rakhmanova, A. Jaldybayev, N. Khan, G. Yergaliuly, A. Mentbayeva, B. Soltabayev

Introduction 

Zinc oxide (ZnO) is a n-type semiconductor material that is suitable for a wide range of 
applications, including gas sensors, photocatalysts, solar cells, and optoelectronic devices. It 
has a high exciton binding energy of 60 meV and a wide bandgap of 3.37 eV [1]. Its significance 
in advanced functional materials has been further enhanced by its distinctive characteristics, 
including biocompatibility, nontoxicity, and high chemical stability [2]. Electrospinning has 
emerged as a straightforward, cost-effective, and highly controllable method for the production of 
one-dimensional (1D) nanofibers with high aspect ratios and large surface area-to-volume ratios, 
among the numerous synthesis techniques for ZnO nanostructures [3]. Applications such as gas 
sensing and catalysis are particularly advantageous due to the substantial enhancement of active 
surface sites by these structural features. A high-voltage electric field is applied to a polymer 
solution containing a Zn precursor during the electrospinning process, which results in the 
formation of continuous nanofibers. These fibers can be calcined to eliminate the polymer matrix 
and crystalize ZnO. Electrospinning provides superior control over fiber morphology, alignment, 
and porosity in comparison to other fabrication techniques, such as hydrothermal or sol-gel 
[4]. Furthermore, this method facilitates the incorporation of dopants or composite materials, 
which enables the final ZnO nanofibers to possess tunable physical and chemical properties. 
Consequently, electrospinning has emerged as the preferred method for the production of ZnO-
based nanostructures for energy-related applications and advanced sensing [5].

The research offers the investigation of the nanosized ZnO via electrospinning method and 
subsequent calcination. Influencing factors, namely, calcination temperature, collector-to-tip 
distance, and voltage, are determined to control the particle size of ZnO.

The Literature review 

In the past decade, electrospinning has been predominantly employed to produce 
nanoparticles from precursor solution containing natural and synthetic polymers with addition 
of metal salts. However, it has also been employed to produce ceramics, such as ZnO materials. 
For example, Liu et al. synthesized ZnO nanoparticles through electrospinning, followed by 
calcination, and analyzed their morphology, elementary composition, and crystal structure. 
There, it was specified that the resulted ZnO has a mesoporous nanofibrous structure which 
possess a single phase with favorable crystallinity [6]. Ultra-thin fibers of ZnO were prepared 
using electrospinning techniques, with poly(vinyl acetate) and zinc acetate as precursors. 
Characterization methods included thermogravimetric analysis, scanning electron microscopy, 
Fourier-transfer infrared, and X-ray diffraction [7]. The morphology and optical properties 
of zinc oxide fibres with diameters in the nanometre to micrometre range are reported 
by Viswanathamurthi. The PVA/zinc acetate organic/inorganic hybridnanofiberss were 
successfully prepared by electrospinning. Pure ZnO fibres were obtained by high-temperature 
calcination of the obtained fibers. Synthesised ZnO has a band gap of 3.13 eV and can be applied 
in different applications [8]. Electrospun ZnO was deposited on a glass substrate from zinc 
acetate dihydrate with polyvinyl acetate p olymer and annealed in the presence of oxygen until 
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organic molecules were decomposed. Characterisation results state that the mean fibre width 
was found to be 260 nm, and fibre thickness was measured at 460 nm. XRD patterns show that 
ZnO has a hexagonal wurtzite structure, and the material band gap for this electrospun ZnO 
fibre was found to be 3.28 eV. In summary, the n-type electrospun ZnO can be fabricated via 
facile electrospinning methods [9].

The methodology 

PVP and ZnAc dihydrate were used as used precursors. 10 wt% solution of PVP in ethanol 
was made and stirred at room temperature for 5 h. Electrospinning was conducted at voltages 
of 14 kV and tip-to-collector distances of 10 cm. Nanofibers were collected on aluminum foil, 
which was then calcined in air at 600, 700 and 800 ℃ for 2 h to determine optimal sintering 
temperature. Selected parameters were applied to investigate the influence of on ZnO (Figure1). 
Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray 
diffraction (XRD) were employed to conduct a comprehensive analysis of the morphological 
and structural characteristics of the synthesized materials. 

 

Figure 1 – Schematic illustration of synthesis procedure

Findings and Discussion

Effective electrospinning conditions were demonstrated by the formation of uniform, bead-
free fibers across the samples, as indicated by SEM observations Figure 2a. The increased 
electrostatic force exerted on the polymer fluid at higher voltages, which enables the fiber to 
undergo greater stretching and elongation during electrospinning, resulting in a finer fiber 
morphology. In the same vein, the electric field intensity is increased by a shorter collector 
distance, which in turn promotes fiber thinning and uniform deposition [10]. The obtained 
fibers were effectively converted into ZnO particles with well-defined morphologies after 
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Distance between collector and nozzle 10 cm;
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calcination Figure 2b. The crystallinity and particle size of ZnO are significantly influenced by 
thermal treatment. We observed a direct correlation between the calcination temperature and 
the size of the ZnO particles [7], [11]. Specifically, higher temperatures encourage grain growth 
and coalescence, while lower temperatures favour the formation of finer particles. In particular, 
the optimized electrospinning parameters are 14 kV voltage, 10 cm tip-to-collector distance, 
and 600 °C calcination resulted in ZnO particles with an average size of approximately 52 nm. 

 

Figure 2 – SEM image (a) fabricated as spun fibers and (b) synthesized ZnO

The successful formation of ZnO was further validated by the Energy Dispersive X-ray 
Spectroscopy (EDS) analysis (Figure 3), which confirmed the presence of zinc (Zn) and oxygen 
(O) elements in their respective stoichiometric concentrations (Figure 3c and Figure 3d). The 
EDS spectra reveal that the synthesised material is of high purity, as there are no detectable 
impurity peaks. This suggests that the electrospinning and subsequent calcination procedure 
did not introduce other elements into the structure. The peaks corresponding to Zn and O are 
both strong and distinct. The formation of a well-ordered ZnO crystal lattice is also facilitated 
by the near-stoichiometric Zn:O ratio, which is crucial for the preservation of stable electronic 
properties and the improvement of the performance of ZnO-based devices, such as gas sensors 
[12], [13]. 
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the structure. The peaks corresponding to Zn and O are both strong and distinct. The formation of a 
well-ordered ZnO crystal lattice is also facilitated by the near-stoichiometric Zn:O ratio, which is 
crucial for the preservation of stable electronic properties and the improvement of the performance 
of ZnO-based devices, such as gas sensors [12], [13].  
 

 
Figure 3 - EDS mapping of ZnO particles. 

 
The calcined samples exhibited a single-phase wurtzite structure of ZnO, as confirmed by X-ray 
Diffraction (XRD) analysis (Figure 4), without any detectable secondary phases or impurities. The 
hexagonal wurtzite crystalline structure is confirmed by the diffraction peaks observed at 
characteristic 2θ values, which correspond to the (100), (002), and (101) planes. The successful 
formation of phase-pure ZnO and the complete decomposition of the polymer matrix during 
calcination are indicated by the absence of additional peaks [1], [14], [15]. Therefore, among different 
calcining temperature 600 °C was determined as an optimal, as it produces clear, sharp, and intense 
diffraction peaks, indicating high crystallinity and phase purity of the material. At higher temperatures 
(700-800°C), a decrease in peak broadening is observed. 
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Figure 3 – EDS mapping of ZnO particles
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  Conclusion 
 
  This research successfully synthesizes and controls ZnO nanoparticle size through 
electrospinning and calcination. Optimal synthetic conditions were reached for applied voltage, 
electrostatic distance, and calcining temperature. Optimal synthetic conditions under which uniform 
ZnO nanoparticles of 52 nm diameters in average could be achieved. This synthetic method allows 
morphology to be precisely controlled, and ZnO can be made compatible with sensor and electronic 
applications. 
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Conclusion

This research successfully synthesizes and controls ZnO nanoparticle size through 
electrospinning and calcination. Optimal synthetic conditions were reached for applied voltage, 
electrostatic distance, and calcining temperature. Optimal synthetic conditions under which 
uniform ZnO nanoparticles of 52 nm diameters in average could be achieved. This synthetic 
method allows morphology to be precisely controlled, and ZnO can be made compatible with 
sensor and electronic applications.
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Электроспиннинг әдісі арқылы ZnO наноқұрылымдарын алу

Аңдатпа. Бұл зерттеу қатаң бақыланатын термиялық жағдайда кейінгі қыздырумен бірге ZnO 
наноқұрылымдарын электроспиннинг әдісі арқылы синтездеуге арналған. Электроспиннинг 
процесі кезінде үздіксіз, біртекті және «түйіршіксіз» полимерлі прекурсорлы талшықтар 
алынып, олардың орташа диаметрінің айтарлықтай азаюы байқалды. Бұл қолданылған кернеу, 
ерітінді концентрациясы және берілу жылдамдығы сияқты электроспиннинг параметрлерінің 
талшық морфологиясының қалыптасуына ықпалын айқын көрсетеді. Кейінгі қыздыру тек 
полимерлі матрицаны жойып қана қоймай, сонымен қатар ZnO кристалдануын бастады, 
нәтижесінде талшықты құрылым жақсы қалыптасқан нанобөлшектерге айналды. Алынған 
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ZnO кристаллиттерінің өлшемі қыздыру температурасына айтарлықтай тәуелді болды: ең 
кіші мәндер оңтайлы термиялық режимде байқалды, бұл наноқұрылымдардың өлшемін дәл 
реттеуге мүмкіндік береді. Элементтік талдау (EDS) тек мырыш пен оттегінің болуын растады, 
бұл синтезделген материалдың жоғары тазалығын және құрамдық тұтастығын дәлелдейді. 
Сонымен қатар рентгеноструктуралық талдау (XRD) тек ZnO-ның гексагоналды вюрцит фазасына 
сәйкес келетін айқын әрі қарқынды дифракциялық шыңдарды көрсетті, бөгде фазалар мен 
қоспалардың ешқандай белгісі табылған жоқ. Жинақталған нәтижелер электроспиннинг пен 
бақыланатын қыздыруды біріктіру арқылы ZnO наноқұрылымдарын қажетті құрылымдық және 
құрамдық сипаттамаларымен алудың сенімді, үнемді және ауқымды тәсіл екенін дәлелдейді. 
Мұндай наноқұрылымдар әртүрлі қолданбаларда, соның ішінде газға сезімтал сенсорларда 
үлкен әлеуетке ие.

Түйін сөздер: ZnO нанобөлшектері, электроспиннинг, қыздыру (кальцинация), наноқұрылымды 
материалдар, полимерлі матрица, кристаллит өлшемі, гексагоналды вюрцит.
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Электропрядение как метод получения наноструктур ZnO

Аннотация. Настоящее исследование посвящено синтезу наноструктур ZnO методом 
электропрядения с последующим прокаливанием при тщательно контролируемых термических 
условиях. В процессе электропрядения удалось получить непрерывные, однородные и свободные 
от дефектов типа «бусин» полимерные прекурсорные волокна, при этом наблюдалось заметное 
уменьшение среднего диаметра волокон. Это наглядно демонстрирует влияние параметров 
электропрядения, таких как приложенное напряжение, концентрация раствора и скорость 
подачи, на формирование морфологии волокон. Последующее прокаливание не только удалило 
полимерную матрицу, но и инициировало кристаллизацию ZnO, трансформировав волокнистую 
структуру в хорошо сформированные наночастицы. Размер кристаллитов полученного ZnO 
сильно зависел от температуры прокаливания: минимальные значения достигались при 
оптимальном термическом режиме, что открывает возможность точной настройки размеров 
наноструктур. Элементный анализ методом энергодисперсионной рентгеновской спектроскопии 
(EDS) подтвердил присутствие исключительно цинка и кислорода, что свидетельствует 
о высокой чистоте и целостности состава синтезированного материала. Дополнительно 
рентгеноструктурный анализ (XRD) показал резкие и интенсивные дифракционные пики, 
соответствующие исключительно гексагональной вюрцитной фазе ZnO, без признаков вторичных 
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фаз или примесей. Совокупность полученных результатов доказывает, что электроформование 
в сочетании с контролируемым прокаливанием представляет собой надёжный, экономичный 
и масштабируемый подход к получению высококачественных наноструктур ZnO с требуемыми 
структурными и композиционными характеристиками. Такие наноструктуры обладают 
значительным потенциалом для различных применений, включая газочувствительные сенсоры.

Ключевые слова: наночастицы ZnO, электропрядение, прокаливание, наноструктурные 
материалы, полимерная матрица, размер кристаллитов, гексагональный вюрцит.
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