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Abstract. This paper explores the phenomenon of gravitational redshift within 
the framework of extended gravity models, which go beyond the conventional 
Einsteinian General Relativity. The gravitational redshift is a key observable 
manifestation of spacetime curvature and serves as an important tool for 
testing theories of gravity. In the framework of general relativity (GR), it is 
explained as a consequence of time dilation in a gravitational field. This paper 
examines the features of the manifestation of gravitational redshift in various 
generalized gravitational theories and conducts a comparative analysis of the 
time predictions of these models with the results of observations, in particular, 
near compact objects and on cosmological scales. We establish a relationship 
between the redshift  
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Perhaps one of the most important observable parameters of all cosmological objects is the 

so-called redshift, based on which a conclusion is drawn about the expansion of the universe. The 
essence of this phenomenon in cosmology is the shift of the emission spectrum lines of luminous 
objects towards longer wavelengths. It is known that excited atoms of rarefied gases or vapors, which 
can occur when any chemical element is heated, emit light, the decomposition of which on a prism 
forms a linear spectrum consisting of separate colored lines. At the same time, each chemical element 
has a linear spectrum characteristic of it. This is due to the fact that the atoms of such elements, 
isolated from each other, emit light only of certain wavelengths. These waves have strictly defined 
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Introduction

Perhaps one of the most important observable parameters of all cosmological objects is the 
so-called redshift, based on which a conclusion is drawn about the expansion of the universe. 
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luminous objects towards longer wavelengths. It is known that excited atoms of rarefied gases 
or vapors, which can occur when any chemical element is heated, emit light, the decomposition 
of which on a prism forms a linear spectrum consisting of separate colored lines. At the same 
time, each chemical element has a linear spectrum characteristic of it. This is due to the fact that 
the atoms of such elements, isolated from each other, emit light only of certain wavelengths. 
These waves have strictly defined resonant frequencies, which in special instruments – 
spectroscopes – are visible as dark or light lines in certain parts of the spectrum characteristic 
of this substance. The shift of these initial spectral lines of chemical elements towards longer 
wavelengths, towards the "red" side, is called redshift. In cosmology, redshifts are denoted 
by z and defined as a relative increase in wavelength 
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cosmology, redshifts are denoted by z and defined as a relative increase in wavelength 𝑧𝑧 = 𝜆𝜆0−𝜆𝜆

𝜆𝜆 . More 

generally, this equation is written as follows 1 + 𝑧𝑧 = 𝑎𝑎(𝑡𝑡0)
𝑎𝑎(𝑡𝑡) =

𝜈𝜈
𝜈𝜈0
= 𝜆𝜆

𝜆𝜆0
 All values marked with the index 

0 refer to the moment of wave reception . Since in the expanding universe, the wavelength of the 
received signal is longer than the emitted one. The value called the redshift parameter is equal to the 
relative increase in the wavelength of the received electromagnetic signal. The magnitude of the 
redshift depends on the relative speed of the objects – the transmitter, the wave generator, and the 
receiver, so the redshift allows you to determine this relative speed [5-6]. Gravitational redshift is a 
critical observational effect in cosmology, indicating the interaction between light and the 
gravitational field of an expanding universe [1]. In standard cosmological models, this phenomenon 
is typically described by the relation between redshift z  , scale factor ( )t , and the Hubble parameter. 
However, more general gravity theories, which extend the framework of General Relativity, present 
new opportunities for exploring redshift in a broader context. 

This study aims to derive both analytical and numerical solutions for the evolution of redshift 
within generalized gravity models. By considering a normalized scale factor, we analyze how redshift 
depends on time and the Hubble parameter, providing a detailed examination of the universe’s 
expansion [2]. 
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of the Starobinsky type) and a nonlinear kinetic term characterized by a nonlinear 𝑘𝑘 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  
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It is possible to express z(t) and study its evolution depending on the solutions of the equations 
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For simplicity, we assume a time-dependent Hubble parameter, which allows the equation 
to be solved numerically. Upon integrating, we obtain expressions for and, providing a time-
evolving model for the redshift [3].
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where C is the constant of integration. Rearranging this, we have:
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Graphical Analysis of  Graphical Analysis of ( )tata ),( ,and )(ta  Figures 1, 2, and 3 present the behavior of the scale 
factor a(t), its first derivative ( )ta , and second derivative ( )ta , respectively, over time. 

Key Observations. From these graphs, it becomes evident that the scale factor exhibits a steady 
increase, while the acceleration ( ))(ta undergoes significant variation due to the effects of generalized 
gravity. 

Figure 1 𝑎𝑎(𝑡𝑡) increases linearly 𝑎𝑎(𝑡𝑡) ∝ 𝑡𝑡𝑛𝑛 𝑛𝑛 > 1 and 𝑎𝑎(𝑡𝑡) ∝ 𝑒𝑒𝐻𝐻𝑡𝑡. Figure 2 a (t) – changes 
slightly. The variable acceleration model 𝑎𝑎(𝑡𝑡) ∝ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ

2
3(𝛼𝛼𝛼𝛼) and 𝑎𝑎(𝑡𝑡) ∝ 𝑡𝑡𝑛𝑛 + 𝛾𝛾𝑒𝑒𝜆𝜆𝜆𝜆, as in the transition 

from matter to dark energy. Figure 3 𝑎𝑎(𝑡𝑡) from negative to positive value. 
The physical meaning 𝑎̇𝑎(𝑡𝑡).𝑎̇𝑎(𝑡𝑡) = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  This is the rate of change in the scale of space over 
time, that is, how much 𝑎̇𝑎(𝑡𝑡 > 0)- The universe is expanding, and𝑎̇𝑎(𝑡𝑡 < 0) compression occurs (in a 
collapsing model), 𝑎̇𝑎(𝑡𝑡) the bigger, the faster the expansion takes place. 

The physical meaning 𝑎̈𝑎(𝑡𝑡).𝑎̈𝑎(𝑡𝑡) = 𝑑𝑑2𝑎𝑎
𝑑𝑑𝑡𝑡2 . This is an acceleration of the expansion or 

deceleration of the universe 𝑎̈𝑎(𝑡𝑡 > 0)-the universe is expanding at an accelerating rate, 𝑎̈𝑎(𝑡𝑡 < 0)- 
expansion slows down. 𝑎̈𝑎(𝑡𝑡) = 0 the scale factor is uniform. This equation is included in the second-
order equation 𝑎̈𝑎𝑎𝑎 = − 4𝜋𝜋𝜋𝜋

3 (𝜌𝜌 + 3𝑝𝑝).  
  
Conclusion 

 
The derived formulas and numerical results provide a comprehensive view of the relationship 

between the scale factor and redshift in generalized gravity models. This study emphasizes the utility 
of alternative approaches to describing the universe's dynamics. By considering extensions of 
classical general relativity, we gain deeper insights into the accelerating expansion of the universe. 
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gravity. 

Figure 1 𝑎𝑎(𝑡𝑡) increases linearly 𝑎𝑎(𝑡𝑡) ∝ 𝑡𝑡𝑛𝑛 𝑛𝑛 > 1 and 𝑎𝑎(𝑡𝑡) ∝ 𝑒𝑒𝐻𝐻𝑡𝑡. Figure 2 a (t) – changes 
slightly. The variable acceleration model 𝑎𝑎(𝑡𝑡) ∝ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ

2
3(𝛼𝛼𝛼𝛼) and 𝑎𝑎(𝑡𝑡) ∝ 𝑡𝑡𝑛𝑛 + 𝛾𝛾𝑒𝑒𝜆𝜆𝜆𝜆, as in the transition 

from matter to dark energy. Figure 3 𝑎𝑎(𝑡𝑡) from negative to positive value. 
The physical meaning 𝑎̇𝑎(𝑡𝑡).𝑎̇𝑎(𝑡𝑡) = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  This is the rate of change in the scale of space over 
time, that is, how much 𝑎̇𝑎(𝑡𝑡 > 0)- The universe is expanding, and𝑎̇𝑎(𝑡𝑡 < 0) compression occurs (in a 
collapsing model), 𝑎̇𝑎(𝑡𝑡) the bigger, the faster the expansion takes place. 

The physical meaning 𝑎̈𝑎(𝑡𝑡).𝑎̈𝑎(𝑡𝑡) = 𝑑𝑑2𝑎𝑎
𝑑𝑑𝑡𝑡2 . This is an acceleration of the expansion or 

deceleration of the universe 𝑎̈𝑎(𝑡𝑡 > 0)-the universe is expanding at an accelerating rate, 𝑎̈𝑎(𝑡𝑡 < 0)- 
expansion slows down. 𝑎̈𝑎(𝑡𝑡) = 0 the scale factor is uniform. This equation is included in the second-
order equation 𝑎̈𝑎𝑎𝑎 = − 4𝜋𝜋𝜋𝜋

3 (𝜌𝜌 + 3𝑝𝑝).  
  
Conclusion 

 
The derived formulas and numerical results provide a comprehensive view of the relationship 

between the scale factor and redshift in generalized gravity models. This study emphasizes the utility 
of alternative approaches to describing the universe's dynamics. By considering extensions of 
classical general relativity, we gain deeper insights into the accelerating expansion of the universe. 

 
The contribution of the authors 
Yerzhanov K.K.- set tasks and general adjustments; 
Sergazina A.M.-writing an article, collecting material; 
Murzakul T.R.-plotting graphs; 
Baurzhan G.B.-plotting graphs. 

 
References 

1. A. Einstein, The foundation of the general theory of relativity, Annalen 
der Physik, 49(7): p.769–822 (1916). DOI: 
https://doi.org/10.1002/andp.19163480702. 

2. S. Weinberg, Cosmology (Oxford University Press, 2008). 
3. C. W Misner, K. S. Thorne, J. A.Wheeler, Gravitation (W. H. Freeman 

and Co., 1973).  
4. S. Carroll, Spacetime and geometry: An introduction to general relativity 

(Addison Wesley, 2003). 
5. K. K., Yerzhanov, B. Meirbekov, G. Baurzhan, R. Myrzakulov, 

Cosmological solutions of F(R,T) gravity model with k-essence. Journal of Physics: 
Conference Series (2019), available at: 
https://www.webofscience.com/wos/woscc/full-record/WOS:000739070400001. 

6. K.K. Yerzhanov, G. Baurzhan, A. Altaybaeva,  R. Myrzakulov, Inflation 
from the symmetry of the generalized cosmological model, Symmetry 13(8)(2021), 
available at: https://www.webofscience.com/wos/woscc/full-
record/WOS:000554820300163. 

 ( t < 0) – expansion 
slows down. Graphical Analysis of ( )tata ),( ,and )(ta  Figures 1, 2, and 3 present the behavior of the scale 
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The derived formulas and numerical results provide a comprehensive view of the relationship 

between the scale factor and redshift in generalized gravity models. This study emphasizes the utility 
of alternative approaches to describing the universe's dynamics. By considering extensions of 
classical general relativity, we gain deeper insights into the accelerating expansion of the universe. 
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Жалпыланған гравитациялық модельдердегі гравитациялық қызыл ауысу

Аңдатпа. Бұл мақалада Эйнштейннің жалпы салыстырмалылық теориясының шеңберінен 
шығатын кеңейтілген гравитациялық модельдер шеңберіндегі гравитациялық қызыл ығысу 
құбылысы зерттелген. Гравитациялық қызыл ығысу кеңістік-уақыт қисықтығының негізі 
байқылатың көрінісі болып табылады және гравитациялық теорияларды сынау үшін маңызды 
құрал ретінде қызмет етеді. Жалпы салыстырмалылық шеңберінде ол гравитациялық 
өрістегі уақыттың кеңеюінің салдары ретінде түсіндіріледі. Бұл  жұмыс әртүрлі жалпыланған 
гравитациялық қызыл ығысу көрінісінің ерекшеліктерін қарасырады және бұл модельдердің 
болжамдарын бақылау нәтижелерімен, атап айтқанда, жинақы объектілердің жанында және 
космологиялық масштабта салыстырмалы талдау жүргізеді. Біз хаббл параметрі арқылы 
байланыстыра отырып, қызыл ығысу мен ғаламның нормаланған масштаб факторы арасында 
байланыс орнатамыз. Біз redshift уақыт эволюциясын зерттеу үшін аналитикалық және сандық 
тәсілдерді әзірлейміз. Басқару теңдеулерін шеше отырып, өрнектерді аламыз үшін, және олардың 
туындылары уақытқа қатысты. Нәтижелер қазіргі космологиялық бақылауларға сәйкес келеді 
және ғаламның кеңею динамикасы туралы жаңа түсінік береді. Сонымен қатар, уақыт бойынша 
масштаб факторының эволюциясын, оның бірінші және екінші туындыларын визуализациялау 
ұсынылған. Бұл нәтижелер гравитациялық күштер мен ғарыштық кеңею арасындағы күрделі 
өзара әрекеттесуді жақсырақ түсінуге ықпал етеді
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Гравитационное красное смещение в обобщенных гравитационных моделях

Аннотация. В данной статье исследуется явление гравитационного красного смещения 
в рамках расширенных гравитационных моделей, которые выходят за рамки традиционной 
общей теории относительности Эйнштейна. Гравитационное красное смещение представляет 
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собой ключевое наблюдаемое проявление кривизны пространства-времени и служит важным 
инструментом для проверки теорий гравитации. В рамках общей теории относительности (ОТО) 
оно объясняется как следствие замедления времени в гравитационном поле. В этой работе 
рассматриваются особенности проявления гравитационного красного смещения в обобщенных 
гравитационных теориях, проводится сравнительный анализ предсказаний этих моделей с 
результатами наблюдений в частности, вблизи компактных объектов и на космологических 
масштабах. Мы устанавливаем взаимосвязь между красным смещением и нормализованным 
масштабным коэффициентом Вселенной, связывая его через параметр Хаббла. Мы разрабатываем 
как аналитические, так и численные подходы для изучения изменения красного смещения 
во времени. Решая основные уравнения, мы получаем выражения для и их производные по 
времени. Результаты согласуются с текущими космологическими наблюдениями и дают новое 
представление о динамике расширения Вселенной. Кроме того, представлены визуализации 
изменения масштабного коэффициента, его первой и второй производных с течением 
времени. Эти результаты способствуют лучшему пониманию сложного взаимодействия между 
гравитационными силами и космическим расширением.

Ключевые слова: гравитационное красное смещение; масштабный коэффициент; параметр 
Хаббла; космологические модели; обобщенная гравитация.
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