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Аңдатпа. Ядролық физика саласындағы өзекті әрі күрделі мәселелердің бірі 
– нуклондар арасындағы әсерлесу процестерін тұтас және толық қамтитын 
әмбебап теорияның әлі де қалыптаса қоймағандығында. Бұл өзара әрекет-
тесу құбылыстары айрықша күрделілікпен ерекшеленеді және оларды си-
паттау үшін ядролық жүйелердің ішкі құрылымдық параметрлерін, соның 
ішінде потенциалдық өрістер мен нуклондардың орташаланған қозғалыс 
заңдылықтарын ескеру қажет. Ядролардың төмен энергия деңгейлерінде-
гі күй-кешендері, әдетте, белгілі бір модельдік тұжырымдамалар аясында 
қарастырылады. Мұндай модельдерде нуклондар орташа потенциалдық 
өрісте қозғалады деп есептеледі, әрі олардың арасындағы өзара әрекет тек 
қана екі бөлшек арасындағы күштермен шектеледі. Осыған ұқсас аналогия-
ны электрондардың атом ішіндегі қозғалысынан көруге болады, дегенмен, 
ядролық күштер табиғаты жағынан мүлде өзгеше, яғни күшті және қысқа 
арақашықтықта әсер ететін сипатқа ие.
Ядро құрылымын зерттеудегі ерекше маңызды аспектілердің бірі – ұжым-
дық қозғалыстар, яғни нуклондардың бірлесе отырып орындайтын үй-
лесімді тербеліс немесе айналу процестері. Бұл қозғалыстар ядроның ішкі 
құрылымын сипаттайтын негізгі спектрлік параметрлерге тікелей ықпал 
етеді. Теориялық тұрғыдан алғанда, бұл құбылыстарды алғаш болып 
терең зерттеген О. Бор мен Б. Моттельсон болды. Олар ядроның геоме-
триялық пішінін сипаттайтын модельдер шеңберінде ұжымдық қозғалы-
стардың физикалық табиғатын түсіндіріп, деформациялық сипаттама-
лармен байланыстырды. Атап айтқанда, төмен энергия деңгейлерінде 
байқалатын бұл қозулардың квадрупольдік деформация параметрімен 
өзара тығыз байланыста екендігі дәлелденді.
Осы ғылыми жұмыс аясында біз бозондық модельдерге негізделген және 
SU(5) симметриясын пайдаланатын теориялық тәсілді қолданамыз. Мақ-
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Кіріспе

Соңғы жылдары ядролық физика саласында күрделі ядролық жүйелердің төмен 
энергиялы күйлерін сипаттауға бағытталған жаңа теориялық тәсілдер қарқынды 
түрде дамып келеді. Осы бағыттардың ішінде айрықша назар аудартатыны – бозондық 
модельдерге негізделген формализм. Бұл әдістеме көп нуклонды жүйелердің ұжымдық 
динамикасын сипаттауда аса тиімді болып отыр. Әсіресе, бұл модель ядролардағы 
ұжымдық қозғалыстардың негізінде жатқан симметрияларды анықтау арқылы 
қарапайымнан күрделіге өтетін құрылымдарды жүйелі түсіндіруге мүмкіндік береді. 
Бастапқыда нуклондардың қозғалысы мен олардың кеңістікте орналасуы классикалық 
механикалық тұрғыда қарастырылса, қазіргі заманғы теориялар бұл қозғалыстардың 
деформацияланған ядролық конфигурациялар арқылы пайда болатынын көрсетіп отыр.

Бозондық модельдердің тиімділігі – олардың симметрия негізінде құрылған алгеб-
ралық құрылымдары мен Гамильтон операторы арқылы күрделі жүйелерді ықшам 
және нақты түрде сипаттай алатындығында. Бұл тәсіл арқылы ядролық құрылымның 
маңызды аспектілерінің бірі – энергетикалық деңгейлер мен ұжымдық тербелістердің 
арасындағы байланыстар ашылады. Жүйенің симметриялары SU(6) сияқты унитарлық 
топтар арқылы анықталып, олардың ішкі құрылымы SU(3) және O(3) топтарына дейінгі 
асимптотикалық шектерге SU(6)⊃SU(3)⊃0(3) жіктеледі. Бұл математикалық құрылым 
ядроның сферикалық, ротациялық және деформацияланған конфигурацияларын 
жүйелі түрде сипаттауға мүмкіндік береді.

Осыған байланысты аталған зерттеудің басты мақсаты – төмен энергиялы күйлердің 
симметриялық табиғатын түсіндіру және ядролық конфигурацияларды анықтауда 
бозондық модельдерді қолданудың аналитикалық мүмкіндіктерін көрсету. Бұл 
әдіс теориялық тұрғыдан ғана емес, тәжірибелік деректермен үйлесімділігімен де 
ерекшеленіп, ядролық физиканың заманауи мәселелерін шешуге тың серпін береді.

Әдіснама 

SU(6)⊃SU(3)⊃0(3) тізбeгінің жaлпылама сипаттамалары
Симметриялық тәсілдерді біз уран ядросының әртүрлі изотоптарын зерттеуде 

қолданамыз. Бұл ретте теориялық модель тек бастапқы деңгейдегі қозулармен шектеліп 
қоймай, екінші реттік кванттау әдістері арқылы толқындық функциялардың да сипатын 

сатымыз – сфероидтық пішінді Уран элементінің үш түрлі изотопының 
құрылымын сандық түрде сипаттау. Бұл ретте ядроның энергетикалық 
деңгейлері мен электромагниттік сәулелену ықтималдығын анықтайтын 
B(E2) өтпелі ықтималдық параметрі есептеліп, алынған нәтижелерді қол-
да бар эксперименттік деректермен салыстырамыз. Зерттеу нәтижелері 
ядролық модельдердің дәлдігін бағалауға және ядролық құрылымдарды 
сипаттаудың тиімділігін арттыруға мүмкіндік береді.
Түйін сөздер: атом ядросы; спектрлер; гамма ауысу.
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анықтауға мүмкіндік береді. Осылайша, кванттық күйлердің классификациясы мен 
олардың энергетикалық сипаттамалары нақты жүйеленіп, нәтижелерді эксперименттік 
деректермен салыстыруға қолайлы жағдай жасалады.

Осы модельге сәйкес пайдаланылатын гамильтонианның жалпылама түрі төмен-
дегідей түрде беріледі:

                                    H=εNd+ α0 Sг Sг + α1 II + α2 QQ + α3 Q3M Q3M + α4 Q4M Q4M	 (1.1)

Мұндағы әртүрлі операторлар бозондар арасындағы өзара әсерлесу сипатын, сондай-
ақ олардың туындау және жойылу процестерін сипаттайды. Бұл операторлар негізінде 
келесі бозондық қосақтау операторы енгізіледі:

                                              Bij=bi 
+ bj=Bij

+, 			   i, j=1,…, A ̃,		                        (1.2)

Бұл опeрaторлaр j күйіндeгі бозонды i күйінe aуыстырaды, олaр өзaрa тұйық aлгeбрa 
құру үшін

                                                               [Bij, Bkl] = δjk Bil – δil Bkj			   	         (1.3)

Кванттық бозондық кеңістіктердегі топтық симметрияларды сипаттайтын Bij опе-
раторлары U (Г) унитарлық тобының генераторлары ретінде қарастырылады. Толық 
көпбозондық күй кеңістігін құру және ондағы күйлердің кванттық сипаттамаларын 
анықтау үшін, ішкі топтық құрылымға негізделген инвариантты тензорлық 
алгебра қажет. Бұл ішкі симметриялар көмегімен толық толқындық функцияларды 
конструкциялап, кванттық сандарды нақтылауға болады. Осы мақсатта біз үлкен U (Г) 
тобының ішкі редукциялық тармақталуын жүзеге асырып, редукциялық базистердің 
көмегімен жаңа функцияларды жүйелі түрде құруға мүмкіндік аламыз. Бұл ретте 
қай базис тізбегінің физикалық модельде шешуші рөл атқаратыны таңдалатын 
динамикалық механизммен тығыз байланысты.

Аталған редукциялық процедураны жүзеге асыруда біз (1.2) формуласында көр-
сетілген қосарланған операторларды, яғни мультипольдік дәрежесі (LM) болатын 
тензорлық операторларды қолданамыз. Бұл операторлар толық бұрыштық моменттер 
бойынша келесі түрде сипатталады:

	 (1.4)

Мысал ретінде, толық бұрыштық момент операторын көрсетуге болады. Ол келесі 
түрде жазылады:

          (1.5)

(1.5) формуласында келтірілгендей, бұрыштық моменттердің қосындысы нақты 
мультипольдік операторлар арқылы анықталады. Бұл операторлардың коммутаторлық 
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𝐼𝐼𝑀𝑀 = ∑ (−)𝑙𝑙−+1√𝑙𝑙(𝑙𝑙+1)(2𝑙𝑙+1)
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(1.5) формуласында келтірілгендей, бұрыштық моменттердің қосындысы нақты 

мультипольдік операторлар арқылы анықталады. Бұл операторлардың коммутаторлық 
қасиеттерін (1.4) формуласына сүйене отырып тексеру мүмкіндігі де қарастырылады. 

 

[𝐵𝐵𝐿𝐿𝐿𝐿
𝑖𝑖𝑖𝑖 , 𝐵𝐵𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖 ] = √(2𝑙𝑙 + 1)(2𝐿𝐿 + 1) ∑(2Λ + 1)(−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑙𝑙𝑖𝑖
′+𝑙𝑙𝑗𝑗 

′ ×
Λ𝜆𝜆

 ( Λ 𝐿𝐿 𝐿𝐿′

−𝜆𝜆 𝑀𝑀 𝑀𝑀′) 

[𝛿𝛿𝑗𝑗𝑗𝑗(−)𝑖𝑖𝑙𝑙+𝐿𝐿+𝐿𝐿′+Λ {𝐿𝐿 𝐿𝐿′ Λ
𝑙𝑙𝑗𝑗′ 𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖

′} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑗𝑗′ − 𝛿𝛿𝑖𝑖𝑖𝑖′(−)𝑙𝑙𝑖𝑖 {𝐿𝐿 𝐿𝐿′ Λ

𝑙𝑙𝑖𝑖
′ 𝑙𝑙𝑗𝑗 𝑙𝑙𝑖𝑖

} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑖𝑖′]                                                      (1.6) 

 
Ол операторларды мына түрде нормалап, Казимир операторын табамыз: 
 

 𝐶𝐶Г = 2 ∑ (−)𝑀𝑀
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖)𝐵𝐵𝐿𝐿−𝑀𝑀
− (𝑖𝑖𝑖𝑖)                                                   (1.7) 

 
Кванттық механиканың күрделі жүйелерін талдауда маңызды рөл атқаратын 

операторлардың ішінде Казимир операторы ерекше орын алады. Формулада келтірілген(1.7), 
𝐶𝐶Г арқылы белгіленген бұл оператор, әртүрлі кванттық күйлер арасындағы байланысты 
сипаттайтын 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖) элементтерін қамтиды. Мұндағы қосынды j, j′, L, M индекстері 
бойынша жүргізіледі, бұл оператордың қарастырылып отырған жүйенің толық сипаттамасын 
қамтуға бағытталғанын көрсетеді. (-1)L-M көбейткіші бұрыштық моменттің әртүрлі 
проекцияларының фазалық ерекшеліктерін ескереді. 

 
Бұл опeрaторлaр 

𝑗𝑗
 күйіндeгі бозонды 𝑖𝑖 күйінe aуыстырaды, олaр өзaрa тұйық aлгeбрa құру 

үшін 
 

[𝐵𝐵𝑖𝑖𝑖𝑖, 𝐵𝐵𝑘𝑘𝑘𝑘] = 𝛿𝛿𝑗𝑗𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵𝑘𝑘𝑘𝑘     (1.3) 
 
Кванттық бозондық кеңістіктердегі топтық симметрияларды сипаттайтын Bij 

операторлары U (Г) унитарлық тобының генераторлары ретінде қарастырылады. Толық 
көпбозондық күй кеңістігін құру және ондағы күйлердің кванттық сипаттамаларын анықтау 
үшін, ішкі топтық құрылымға негізделген инвариантты тензорлық алгебра қажет. Бұл ішкі 
симметриялар көмегімен толық толқындық функцияларды конструкциялап, кванттық 
сандарды нақтылауға болады. Осы мақсатта біз үлкен U (Г) тобының ішкі редукциялық 
тармақталуын жүзеге асырып, редукциялық базистердің көмегімен жаңа функцияларды 
жүйелі түрде құруға мүмкіндік аламыз. Бұл ретте қай базис тізбегінің физикалық модельде 
шешуші рөл атқаратыны таңдалатын динамикалық механизммен тығыз байланысты. 

Аталған редукциялық процедураны жүзеге асыруда біз (1.2) формуласында көрсетілген 
қосарланған операторларды, яғни мультипольдік дәрежесі (LM) болатын тензорлық 
операторларды қолданамыз. Бұл операторлар толық бұрыштық моменттер бойынша келесі 
түрде сипатталады: 

 
𝐵𝐵𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐿𝐿𝐿𝐿(𝑙𝑙𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑥𝑥𝑗𝑗) = (𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗)𝐿𝐿𝐿𝐿 =

∑ (−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑚𝑚𝑗𝑗√2𝐿𝐿 + 1𝑚𝑚1𝑚𝑚2 ( 𝑙𝑙𝑖𝑖 𝐿𝐿 𝑙𝑙𝑗𝑗
𝑚𝑚𝑖𝑖 𝑀𝑀 −𝑚𝑚𝑗𝑗

)𝐵𝐵(𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗)  (1.4) 

 
Мысал ретінде, толық бұрыштық момент операторын көрсетуге болады. Ол келесі түрде 

жазылады: 
 

𝐼𝐼𝑀𝑀 = ∑ (−)𝑙𝑙−+1√𝑙𝑙(𝑙𝑙+1)(2𝑙𝑙+1)
3  𝐵𝐵1𝑀𝑀(𝑙𝑙𝑥𝑥,𝑙𝑙𝑙𝑙 𝑙𝑙𝑥𝑥)                      (1.5) 

 
(1.5) формуласында келтірілгендей, бұрыштық моменттердің қосындысы нақты 

мультипольдік операторлар арқылы анықталады. Бұл операторлардың коммутаторлық 
қасиеттерін (1.4) формуласына сүйене отырып тексеру мүмкіндігі де қарастырылады. 

 

[𝐵𝐵𝐿𝐿𝐿𝐿
𝑖𝑖𝑖𝑖 , 𝐵𝐵𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖 ] = √(2𝑙𝑙 + 1)(2𝐿𝐿 + 1) ∑(2Λ + 1)(−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑙𝑙𝑖𝑖
′+𝑙𝑙𝑗𝑗 

′ ×
Λ𝜆𝜆

 ( Λ 𝐿𝐿 𝐿𝐿′

−𝜆𝜆 𝑀𝑀 𝑀𝑀′) 

[𝛿𝛿𝑗𝑗𝑗𝑗(−)𝑖𝑖𝑙𝑙+𝐿𝐿+𝐿𝐿′+Λ {𝐿𝐿 𝐿𝐿′ Λ
𝑙𝑙𝑗𝑗′ 𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖

′} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑗𝑗′ − 𝛿𝛿𝑖𝑖𝑖𝑖′(−)𝑙𝑙𝑖𝑖 {𝐿𝐿 𝐿𝐿′ Λ

𝑙𝑙𝑖𝑖
′ 𝑙𝑙𝑗𝑗 𝑙𝑙𝑖𝑖

} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑖𝑖′]                                                      (1.6) 

 
Ол операторларды мына түрде нормалап, Казимир операторын табамыз: 
 

 𝐶𝐶Г = 2 ∑ (−)𝑀𝑀
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖)𝐵𝐵𝐿𝐿−𝑀𝑀
− (𝑖𝑖𝑖𝑖)                                                   (1.7) 

 
Кванттық механиканың күрделі жүйелерін талдауда маңызды рөл атқаратын 

операторлардың ішінде Казимир операторы ерекше орын алады. Формулада келтірілген(1.7), 
𝐶𝐶Г арқылы белгіленген бұл оператор, әртүрлі кванттық күйлер арасындағы байланысты 
сипаттайтын 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖) элементтерін қамтиды. Мұндағы қосынды j, j′, L, M индекстері 
бойынша жүргізіледі, бұл оператордың қарастырылып отырған жүйенің толық сипаттамасын 
қамтуға бағытталғанын көрсетеді. (-1)L-M көбейткіші бұрыштық моменттің әртүрлі 
проекцияларының фазалық ерекшеліктерін ескереді. 
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қасиеттерін (1.4) формуласына сүйене отырып тексеру мүмкіндігі де қарастырылады.

                            (1.6)

Ол операторларды мына түрде нормалап, Казимир операторын табамыз:

                                             (1.7)

Кванттық механиканың күрделі жүйелерін талдауда маңызды рөл атқаратын опера-
торлардың ішінде Казимир операторы ерекше орын алады. Формулада келтірілген(1.7), 
CГ арқылы белгіленген бұл оператор, әртүрлі кванттық күйлер арасындағы байланысты 
сипаттайтын BLM– (ij) элементтерін қамтиды. Мұндағы қосынды j, j′, L, M индекстері 
бойынша жүргізіледі, бұл оператордың қарастырылып отырған жүйенің толық сипат-
тамасын қамтуға бағытталғанын көрсетеді. (-1)L-M көбейткіші бұрыштық моменттің 
әртүрлі проекцияларының фазалық ерекшеліктерін ескереді.

Бозондық жүйелер үшін квазиспиндік операторлар ұғымы енгізіледі:

                      (1.8)

Енді, осы квазиспиндік операторларды пайдалана отырып, бастапқы Казимир опера-
торын (1.9) түрінде қайта жазуға болады:

            (1.9)

Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген 
дұрыс болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. 
Сондықтан осы түрін келтіре аламыз

                                   (1.10)

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
үшін теңдеулер жүйесі пайдаланылады. Бұл жерде ν – бозондардың жалпы саны, яғни 
жүйедегі сенсорлық кванттар саны ретінде қарастырылады. Біз Γ – өлшемді кеңістікте 
жүйенің симметриялық құрылымын талдай отырып, ss- және d- бозондарды қамтитын 
кеңістіктерге назар аударамыз. Бұл жағдайда l=0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s- бозон және бес түрлі d- бозондық күй бар. Демек, 
жалпы кеңістіктің өлшемі алтыға тең болады.

Осы d-2,d-1,d0,d+1,d+2  кеңістікте әрекет ететін  B± түріндегі бозондық операторлар саны 
Г2=36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ кеңістіктің 

 
Бұл опeрaторлaр 

𝑗𝑗
 күйіндeгі бозонды 𝑖𝑖 күйінe aуыстырaды, олaр өзaрa тұйық aлгeбрa құру 

үшін 
 

[𝐵𝐵𝑖𝑖𝑖𝑖, 𝐵𝐵𝑘𝑘𝑘𝑘] = 𝛿𝛿𝑗𝑗𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵𝑘𝑘𝑘𝑘     (1.3) 
 
Кванттық бозондық кеңістіктердегі топтық симметрияларды сипаттайтын Bij 

операторлары U (Г) унитарлық тобының генераторлары ретінде қарастырылады. Толық 
көпбозондық күй кеңістігін құру және ондағы күйлердің кванттық сипаттамаларын анықтау 
үшін, ішкі топтық құрылымға негізделген инвариантты тензорлық алгебра қажет. Бұл ішкі 
симметриялар көмегімен толық толқындық функцияларды конструкциялап, кванттық 
сандарды нақтылауға болады. Осы мақсатта біз үлкен U (Г) тобының ішкі редукциялық 
тармақталуын жүзеге асырып, редукциялық базистердің көмегімен жаңа функцияларды 
жүйелі түрде құруға мүмкіндік аламыз. Бұл ретте қай базис тізбегінің физикалық модельде 
шешуші рөл атқаратыны таңдалатын динамикалық механизммен тығыз байланысты. 

Аталған редукциялық процедураны жүзеге асыруда біз (1.2) формуласында көрсетілген 
қосарланған операторларды, яғни мультипольдік дәрежесі (LM) болатын тензорлық 
операторларды қолданамыз. Бұл операторлар толық бұрыштық моменттер бойынша келесі 
түрде сипатталады: 

 
𝐵𝐵𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐿𝐿𝐿𝐿(𝑙𝑙𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑥𝑥𝑗𝑗) = (𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗)𝐿𝐿𝐿𝐿 =

∑ (−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑚𝑚𝑗𝑗√2𝐿𝐿 + 1𝑚𝑚1𝑚𝑚2 ( 𝑙𝑙𝑖𝑖 𝐿𝐿 𝑙𝑙𝑗𝑗
𝑚𝑚𝑖𝑖 𝑀𝑀 −𝑚𝑚𝑗𝑗

)𝐵𝐵(𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗)  (1.4) 

 
Мысал ретінде, толық бұрыштық момент операторын көрсетуге болады. Ол келесі түрде 

жазылады: 
 

𝐼𝐼𝑀𝑀 = ∑ (−)𝑙𝑙−+1√𝑙𝑙(𝑙𝑙+1)(2𝑙𝑙+1)
3  𝐵𝐵1𝑀𝑀(𝑙𝑙𝑥𝑥,𝑙𝑙𝑙𝑙 𝑙𝑙𝑥𝑥)                      (1.5) 

 
(1.5) формуласында келтірілгендей, бұрыштық моменттердің қосындысы нақты 

мультипольдік операторлар арқылы анықталады. Бұл операторлардың коммутаторлық 
қасиеттерін (1.4) формуласына сүйене отырып тексеру мүмкіндігі де қарастырылады. 

 

[𝐵𝐵𝐿𝐿𝐿𝐿
𝑖𝑖𝑖𝑖 , 𝐵𝐵𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖 ] = √(2𝑙𝑙 + 1)(2𝐿𝐿 + 1) ∑(2Λ + 1)(−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑙𝑙𝑖𝑖
′+𝑙𝑙𝑗𝑗 

′ ×
Λ𝜆𝜆

 ( Λ 𝐿𝐿 𝐿𝐿′

−𝜆𝜆 𝑀𝑀 𝑀𝑀′) 

[𝛿𝛿𝑗𝑗𝑗𝑗(−)𝑖𝑖𝑙𝑙+𝐿𝐿+𝐿𝐿′+Λ {𝐿𝐿 𝐿𝐿′ Λ
𝑙𝑙𝑗𝑗′ 𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖

′} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑗𝑗′ − 𝛿𝛿𝑖𝑖𝑖𝑖′(−)𝑙𝑙𝑖𝑖 {𝐿𝐿 𝐿𝐿′ Λ

𝑙𝑙𝑖𝑖
′ 𝑙𝑙𝑗𝑗 𝑙𝑙𝑖𝑖

} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑖𝑖′]                                                      (1.6) 

 
Ол операторларды мына түрде нормалап, Казимир операторын табамыз: 
 

 𝐶𝐶Г = 2 ∑ (−)𝑀𝑀
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖)𝐵𝐵𝐿𝐿−𝑀𝑀
− (𝑖𝑖𝑖𝑖)                                                   (1.7) 

 
Кванттық механиканың күрделі жүйелерін талдауда маңызды рөл атқаратын 

операторлардың ішінде Казимир операторы ерекше орын алады. Формулада келтірілген(1.7), 
𝐶𝐶Г арқылы белгіленген бұл оператор, әртүрлі кванттық күйлер арасындағы байланысты 
сипаттайтын 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖) элементтерін қамтиды. Мұндағы қосынды j, j′, L, M индекстері 
бойынша жүргізіледі, бұл оператордың қарастырылып отырған жүйенің толық сипаттамасын 
қамтуға бағытталғанын көрсетеді. (-1)L-M көбейткіші бұрыштық моменттің әртүрлі 
проекцияларының фазалық ерекшеліктерін ескереді. 

 
Бұл опeрaторлaр 

𝑗𝑗
 күйіндeгі бозонды 𝑖𝑖 күйінe aуыстырaды, олaр өзaрa тұйық aлгeбрa құру 

үшін 
 

[𝐵𝐵𝑖𝑖𝑖𝑖, 𝐵𝐵𝑘𝑘𝑘𝑘] = 𝛿𝛿𝑗𝑗𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵𝑘𝑘𝑘𝑘     (1.3) 
 
Кванттық бозондық кеңістіктердегі топтық симметрияларды сипаттайтын Bij 

операторлары U (Г) унитарлық тобының генераторлары ретінде қарастырылады. Толық 
көпбозондық күй кеңістігін құру және ондағы күйлердің кванттық сипаттамаларын анықтау 
үшін, ішкі топтық құрылымға негізделген инвариантты тензорлық алгебра қажет. Бұл ішкі 
симметриялар көмегімен толық толқындық функцияларды конструкциялап, кванттық 
сандарды нақтылауға болады. Осы мақсатта біз үлкен U (Г) тобының ішкі редукциялық 
тармақталуын жүзеге асырып, редукциялық базистердің көмегімен жаңа функцияларды 
жүйелі түрде құруға мүмкіндік аламыз. Бұл ретте қай базис тізбегінің физикалық модельде 
шешуші рөл атқаратыны таңдалатын динамикалық механизммен тығыз байланысты. 

Аталған редукциялық процедураны жүзеге асыруда біз (1.2) формуласында көрсетілген 
қосарланған операторларды, яғни мультипольдік дәрежесі (LM) болатын тензорлық 
операторларды қолданамыз. Бұл операторлар толық бұрыштық моменттер бойынша келесі 
түрде сипатталады: 

 
𝐵𝐵𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐿𝐿𝐿𝐿(𝑙𝑙𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑥𝑥𝑗𝑗) = (𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗)𝐿𝐿𝐿𝐿 =

∑ (−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑚𝑚𝑗𝑗√2𝐿𝐿 + 1𝑚𝑚1𝑚𝑚2 ( 𝑙𝑙𝑖𝑖 𝐿𝐿 𝑙𝑙𝑗𝑗
𝑚𝑚𝑖𝑖 𝑀𝑀 −𝑚𝑚𝑗𝑗

)𝐵𝐵(𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖, 𝑙𝑙𝑗𝑗𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗)  (1.4) 

 
Мысал ретінде, толық бұрыштық момент операторын көрсетуге болады. Ол келесі түрде 

жазылады: 
 

𝐼𝐼𝑀𝑀 = ∑ (−)𝑙𝑙−+1√𝑙𝑙(𝑙𝑙+1)(2𝑙𝑙+1)
3  𝐵𝐵1𝑀𝑀(𝑙𝑙𝑥𝑥,𝑙𝑙𝑙𝑙 𝑙𝑙𝑥𝑥)                      (1.5) 

 
(1.5) формуласында келтірілгендей, бұрыштық моменттердің қосындысы нақты 

мультипольдік операторлар арқылы анықталады. Бұл операторлардың коммутаторлық 
қасиеттерін (1.4) формуласына сүйене отырып тексеру мүмкіндігі де қарастырылады. 

 

[𝐵𝐵𝐿𝐿𝐿𝐿
𝑖𝑖𝑖𝑖 , 𝐵𝐵𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖 ] = √(2𝑙𝑙 + 1)(2𝐿𝐿 + 1) ∑(2Λ + 1)(−)𝑙𝑙𝑖𝑖+𝑙𝑙𝑗𝑗+𝑙𝑙𝑖𝑖
′+𝑙𝑙𝑗𝑗 

′ ×
Λ𝜆𝜆

 ( Λ 𝐿𝐿 𝐿𝐿′

−𝜆𝜆 𝑀𝑀 𝑀𝑀′) 

[𝛿𝛿𝑗𝑗𝑗𝑗(−)𝑖𝑖𝑙𝑙+𝐿𝐿+𝐿𝐿′+Λ {𝐿𝐿 𝐿𝐿′ Λ
𝑙𝑙𝑗𝑗′ 𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖

′} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑗𝑗′ − 𝛿𝛿𝑖𝑖𝑖𝑖′(−)𝑙𝑙𝑖𝑖 {𝐿𝐿 𝐿𝐿′ Λ

𝑙𝑙𝑖𝑖
′ 𝑙𝑙𝑗𝑗 𝑙𝑙𝑖𝑖

} 𝐵𝐵Λ𝜆𝜆
𝑖𝑖𝑖𝑖′]                                                      (1.6) 

 
Ол операторларды мына түрде нормалап, Казимир операторын табамыз: 
 

 𝐶𝐶Г = 2 ∑ (−)𝑀𝑀
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖)𝐵𝐵𝐿𝐿−𝑀𝑀
− (𝑖𝑖𝑖𝑖)                                                   (1.7) 

 
Кванттық механиканың күрделі жүйелерін талдауда маңызды рөл атқаратын 

операторлардың ішінде Казимир операторы ерекше орын алады. Формулада келтірілген(1.7), 
𝐶𝐶Г арқылы белгіленген бұл оператор, әртүрлі кванттық күйлер арасындағы байланысты 
сипаттайтын 𝐵𝐵𝐿𝐿𝐿𝐿

− (𝑖𝑖𝑖𝑖) элементтерін қамтиды. Мұндағы қосынды j, j′, L, M индекстері 
бойынша жүргізіледі, бұл оператордың қарастырылып отырған жүйенің толық сипаттамасын 
қамтуға бағытталғанын көрсетеді. (-1)L-M көбейткіші бұрыштық моменттің әртүрлі 
проекцияларының фазалық ерекшеліктерін ескереді. 

Бозондық жүйелер үшін квазиспиндік операторлар ұғымы енгізіледі: 
 

𝑆𝑆Г = ∑ (−)𝑚𝑚
𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙−𝑚𝑚;     𝑆𝑆Г

+ = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙
+

𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙−𝑚𝑚
+ (−)𝑚𝑚                                  (1.8) 

 
Енді, осы квазиспиндік операторларды пайдалана отырып, бастапқы Казимир операторын 

(1.9) түрінде қайта жазуға болады: 
 

     𝐶𝐶Г = 𝑁𝑁(𝑁𝑁 + Г − 2) − (𝑆𝑆Г
+𝑆𝑆Г)                                                  (1.9) 

 
Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген дұрыс 

болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. Сондықтан 
осы түрін келтіре аламыз 

 
𝑆𝑆Г

+𝑆𝑆Г = (𝑁𝑁 − 𝜐𝜐)(𝑁𝑁 + Г + 𝜐𝜐 − 2)                                                  (1.10) 
 

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
үшін теңдеулер жүйесі пайдаланылады. Бұл жерде ν — бозондардың жалпы саны, яғни 
жүйедегі сенсорлық кванттар саны ретінде қарастырылады. Біз Γ - өлшемді кеңістікте 
жүйенің симметриялық құрылымын талдай отырып, ss-және d-бозондарды қамтитын 
кеңістіктерге назар аударамыз. Бұл жағдайда 𝑙𝑙 = 0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s-бозон және бес түрлі d-бозондық күй бар. Демек, жалпы 
кеңістіктің өлшемі алтыға тең болады. 

Осы 𝑑𝑑−2, 𝑑𝑑−1, 𝑑𝑑0, 𝑑𝑑+1, 𝑑𝑑+2 кеңістікте әрекет ететін  𝐵𝐵(±) түріндегі бозондық операторлар 
саны Г2 = 36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ 
кеңістіктің ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді: 

1) Симметриялық комбинациялар (жұптық операторлар) 
 

𝐵𝐵00
(+)(00) = (𝑆𝑆+𝑆𝑆)0 = 𝑁𝑁𝑆𝑆,     𝐵𝐵00

(+)(22) = 1
√5 (𝑑𝑑+𝑑𝑑)0 = 1

√5 𝑁𝑁𝑑𝑑;            (1.11) 
 

Мұндағы N8 және Nd — сәйкесінше s- және d-бозондардың саны. 
квадрупольдік (екінші ретті) операторлар (L=2): 
 

𝑄𝑄𝑀𝑀
(+) = 1

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 1
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 + (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2    𝑄𝑄𝑀𝑀 = 𝐵𝐵2𝑀𝑀

22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀
2 ;          (1.12) 

 
гексадекапольдік (төртінші ретті) операторлар: 
 

                       𝑄𝑄4𝑀𝑀 = 𝐵𝐵2𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

4 ;                                (1.13) 
 

2) он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті 
 

𝐼𝐼𝑀𝑀 = −√10𝐵𝐵1𝑀𝑀
22 = −√10(𝑑𝑑+𝑑𝑑)𝑀𝑀

1                                 (1.14) 
 

квадрупольдік антисимметриялы оператор: 
 

𝑄𝑄𝑀𝑀
(−) = 𝑖𝑖

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 𝑖𝑖
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 − (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2                                (1.15) 

 
октаупольдік (үшінші ретті) оператордың жеті компоненті 
 

Бозондық жүйелер үшін квазиспиндік операторлар ұғымы енгізіледі: 
 

𝑆𝑆Г = ∑ (−)𝑚𝑚
𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙−𝑚𝑚;     𝑆𝑆Г

+ = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙
+

𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙−𝑚𝑚
+ (−)𝑚𝑚                                  (1.8) 

 
Енді, осы квазиспиндік операторларды пайдалана отырып, бастапқы Казимир операторын 

(1.9) түрінде қайта жазуға болады: 
 

     𝐶𝐶Г = 𝑁𝑁(𝑁𝑁 + Г − 2) − (𝑆𝑆Г
+𝑆𝑆Г)                                                  (1.9) 

 
Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген дұрыс 

болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. Сондықтан 
осы түрін келтіре аламыз 

 
𝑆𝑆Г

+𝑆𝑆Г = (𝑁𝑁 − 𝜐𝜐)(𝑁𝑁 + Г + 𝜐𝜐 − 2)                                                  (1.10) 
 

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
үшін теңдеулер жүйесі пайдаланылады. Бұл жерде ν — бозондардың жалпы саны, яғни 
жүйедегі сенсорлық кванттар саны ретінде қарастырылады. Біз Γ - өлшемді кеңістікте 
жүйенің симметриялық құрылымын талдай отырып, ss-және d-бозондарды қамтитын 
кеңістіктерге назар аударамыз. Бұл жағдайда 𝑙𝑙 = 0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s-бозон және бес түрлі d-бозондық күй бар. Демек, жалпы 
кеңістіктің өлшемі алтыға тең болады. 

Осы 𝑑𝑑−2, 𝑑𝑑−1, 𝑑𝑑0, 𝑑𝑑+1, 𝑑𝑑+2 кеңістікте әрекет ететін  𝐵𝐵(±) түріндегі бозондық операторлар 
саны Г2 = 36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ 
кеңістіктің ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді: 

1) Симметриялық комбинациялар (жұптық операторлар) 
 

𝐵𝐵00
(+)(00) = (𝑆𝑆+𝑆𝑆)0 = 𝑁𝑁𝑆𝑆,     𝐵𝐵00

(+)(22) = 1
√5 (𝑑𝑑+𝑑𝑑)0 = 1

√5 𝑁𝑁𝑑𝑑;            (1.11) 
 

Мұндағы N8 және Nd — сәйкесінше s- және d-бозондардың саны. 
квадрупольдік (екінші ретті) операторлар (L=2): 
 

𝑄𝑄𝑀𝑀
(+) = 1

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 1
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 + (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2    𝑄𝑄𝑀𝑀 = 𝐵𝐵2𝑀𝑀

22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀
2 ;          (1.12) 

 
гексадекапольдік (төртінші ретті) операторлар: 
 

                       𝑄𝑄4𝑀𝑀 = 𝐵𝐵2𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

4 ;                                (1.13) 
 

2) он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті 
 

𝐼𝐼𝑀𝑀 = −√10𝐵𝐵1𝑀𝑀
22 = −√10(𝑑𝑑+𝑑𝑑)𝑀𝑀

1                                 (1.14) 
 

квадрупольдік антисимметриялы оператор: 
 

𝑄𝑄𝑀𝑀
(−) = 𝑖𝑖

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 𝑖𝑖
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 − (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2                                (1.15) 

 
октаупольдік (үшінші ретті) оператордың жеті компоненті 
 

Бозондық жүйелер үшін квазиспиндік операторлар ұғымы енгізіледі: 
 

𝑆𝑆Г = ∑ (−)𝑚𝑚
𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙−𝑚𝑚;     𝑆𝑆Г

+ = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙
+

𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙−𝑚𝑚
+ (−)𝑚𝑚                                  (1.8) 

 
Енді, осы квазиспиндік операторларды пайдалана отырып, бастапқы Казимир операторын 

(1.9) түрінде қайта жазуға болады: 
 

     𝐶𝐶Г = 𝑁𝑁(𝑁𝑁 + Г − 2) − (𝑆𝑆Г
+𝑆𝑆Г)                                                  (1.9) 

 
Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген дұрыс 

болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. Сондықтан 
осы түрін келтіре аламыз 

 
𝑆𝑆Г

+𝑆𝑆Г = (𝑁𝑁 − 𝜐𝜐)(𝑁𝑁 + Г + 𝜐𝜐 − 2)                                                  (1.10) 
 

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
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кеңістіктерге назар аударамыз. Бұл жағдайда 𝑙𝑙 = 0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s-бозон және бес түрлі d-бозондық күй бар. Демек, жалпы 
кеңістіктің өлшемі алтыға тең болады. 

Осы 𝑑𝑑−2, 𝑑𝑑−1, 𝑑𝑑0, 𝑑𝑑+1, 𝑑𝑑+2 кеңістікте әрекет ететін  𝐵𝐵(±) түріндегі бозондық операторлар 
саны Г2 = 36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ 
кеңістіктің ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді: 

1) Симметриялық комбинациялар (жұптық операторлар) 
 

𝐵𝐵00
(+)(00) = (𝑆𝑆+𝑆𝑆)0 = 𝑁𝑁𝑆𝑆,     𝐵𝐵00

(+)(22) = 1
√5 (𝑑𝑑+𝑑𝑑)0 = 1

√5 𝑁𝑁𝑑𝑑;            (1.11) 
 

Мұндағы N8 және Nd — сәйкесінше s- және d-бозондардың саны. 
квадрупольдік (екінші ретті) операторлар (L=2): 
 

𝑄𝑄𝑀𝑀
(+) = 1

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 1
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 + (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2    𝑄𝑄𝑀𝑀 = 𝐵𝐵2𝑀𝑀

22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀
2 ;          (1.12) 

 
гексадекапольдік (төртінші ретті) операторлар: 
 

                       𝑄𝑄4𝑀𝑀 = 𝐵𝐵2𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

4 ;                                (1.13) 
 

2) он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті 
 

𝐼𝐼𝑀𝑀 = −√10𝐵𝐵1𝑀𝑀
22 = −√10(𝑑𝑑+𝑑𝑑)𝑀𝑀

1                                 (1.14) 
 

квадрупольдік антисимметриялы оператор: 
 

𝑄𝑄𝑀𝑀
(−) = 𝑖𝑖

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 𝑖𝑖
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 − (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2                                (1.15) 

 
октаупольдік (үшінші ретті) оператордың жеті компоненті 
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ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді:

1) Симметриялық комбинациялар (жұптық операторлар)

        (1.11)

Мұндағы N8 және Nd – сәйкесінше s – және d – бозондардың саны.
квадрупольдік (екінші ретті) операторлар (L=2):

  (1.12)

гексадекапольдік (төртінші ретті) операторлар:

                                (1.13)

он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті

             (1.14)

квадрупольдік антисимметриялы оператор:

                    (1.15)

октаупольдік (үшінші ретті) оператордың жеті компоненті

                 (1.16)

Жоғарыда берілген (1.11)–(1.16) формулалар арқылы анықталған барлық операторлар 
эрмиттік (өз-өзіне комплекссоқтасқан) қасиетке ие, бұл олардың физикалық реалды 
шамаларға сәйкестігін қамтамасыз етеді. Эрмиттік шарт кванттық операторлардың өздік 
мәндерінің нақты болуын қамтамасыз етеді және бұл операторлар нақты физикалық 
шамаларды сипаттайды, яғни

Алдында қарастырып өткен қосарланған операторларды енгізген соң, SU(6) 
симметриялық тобына сәйкес келетін бозондық жүйенің гамильтонианын (1.1) – 
формасында жазу күрделіге айналады. Себебі бастапқы түрде s+, s операторлары 
тек жүйенің негізгі күйін сипаттауға мүмкіндік береді, ал олардың қатысуы басқа 
энергетикалық күйлерге қатысты ақпаратты шектейді. Сондықтан бастапқы форма 
(1.1) гамильтонианнан алынып тасталады. Дегенмен, жүйедегі бозондар саны – яғни, 
N = Ns+ Nd – тұрақты шама ретінде есепке алына береді. Осыған байланысты, бұрын 

𝑄𝑄3𝑀𝑀 = 𝐵𝐵3𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

3                                                      (1.16) 
 

Жоғарыда берілген (1.11)–(1.16) формулалар арқылы анықталған барлық операторлар 
эрмиттік (өз-өзіне комплекссоқтасқан) қасиетке ие, бұл олардың физикалық реалды 
шамаларға сәйкестігін қамтамасыз етеді. Эрмиттік шарт кванттық операторлардың өздік 
мәндерінің нақты болуын қамтамасыз етеді және бұл операторлар нақты физикалық 
шамаларды сипаттайды, яғни 

 
𝑄𝑄𝐿𝐿𝐿𝐿

+ = (−)𝑀𝑀𝑄𝑄𝐿𝐿−𝑀𝑀 
 

 Алдында қарастырып өткен қосарланған операторларды енгізген соң, SU(6) 
симметриялық тобына сәйкес келетін бозондық жүйенің гамильтонианын (1.1)-формасында 
жазу күрделіге айналады. Себебі бастапқы түрде s+,s операторлары тек жүйенің негізгі күйін 
сипаттауға мүмкіндік береді, ал олардың қатысуы басқа энергетикалық күйлерге қатысты 
ақпаратты шектейді. Сондықтан бастапқы форма (1.1) гамильтонианнан алынып тасталады. 
Дегенмен, жүйедегі бозондар саны — яғни, N=Ns +Nd— тұрақты шама ретінде есепке алына 
береді. Осыған байланысты, бұрын қолданылған 

𝑄𝑄𝑀𝑀+

және 
𝑄𝑄𝑀𝑀

операторларының орнына 
(1.12)-дегі өрнектерге арнайы түрде модификацияланған комбинациялар енгізіледі. Бұл жаңа 
операторлар симметрия мен операторлық алгебраны сақтап қалуға арналған. Атап айтқанда, 
келесі түрдегі өрнек енгізіледі: 

𝑄𝑄𝑀𝑀
′ = 𝐵𝐵2𝑀𝑀

20 + 𝐵𝐵2𝑀𝑀
02 + √7

2 𝑄𝑄𝑀𝑀                                                 (1.17) 
 

Жаңа енгізілген 𝑄𝑄𝑀𝑀
′  операторларының өзара коммутациялық қатынастары мынадай 

алгебралық құрылымға бағынады: 
 

[𝑄𝑄𝑀𝑀
′ , 𝑄𝑄𝑀𝑀′

′ ] = − 3
4 √30 ∑ (−)𝜆𝜆

𝜆𝜆 ( 2 2 1
𝑀𝑀 𝑀𝑀 −𝜆𝜆) 𝐼𝐼𝜆𝜆′                                   (1.18) 

 
Электрлік квадрупольдік ауысу үдерісін сипаттайтын Tk(E2) операторлары да мына 

түрде бейнеленеді: 
 

𝑇𝑇𝑘𝑘(𝐸𝐸2) = 𝑞𝑞1[(𝑑𝑑+𝑠𝑠)𝑘𝑘
2 + (𝑠𝑠+𝑑𝑑)𝑘𝑘

(2)]
𝑘𝑘

(2)
+ 𝑞𝑞2(𝑑𝑑+𝑑𝑑)𝑘𝑘

(2) = 𝑞𝑞1𝑄𝑄𝜇𝜇
+ + 𝑞𝑞2𝑄𝑄𝜇𝜇                    (1.19) 

 
Осылайша, бозондық операторлар жүйесінің алгебралық құрылымын және одан 

туындайтын гамильтонианның топтық симметриясын толық меңгеру — кванттық жүйенің 
энергетикалық спектрін (өздік мәндерін) және оларға сәйкес келетін кванттық күй 
функцияларын (өздік функцияларды) анықтауға мүмкіндік береді. Басқаша айтқанда, бұл 
кванттық механикадағы спектрлік есепті шешудің іргелі қадамы болып табылады. Мәселені 
аналитикалық жолмен шешу үшін біз үш түрлі асимптотикалық шекті — яғни жүйенің 
белгілі бір идеалдандырылған физикалық режимдерін — негізге аламыз. Мұндай шектерде 
есептеу едәуір жеңілдейді, өйткені күрделі өзара әрекеттесулер орнына жүйенің басым 
сипаттары ғана ескеріледі. Нәтижесінде, бұл әдістер атом ядроларының құрылымын 
зерттейтін ӘБМ (әлемдік бәсекеге қабілетті модельдер) шеңберінде тәжірибелік 
зерттеулермен тиімді біріктіріліп келеді. 

Біздің жұмысымызда қарастырылатын негізгі мақсат —
𝑈𝑈(6) ⊃ 𝑆𝑆𝑆𝑆(3) ⊃ 0(3) асимптотикалық шектерді қолдану арқылы кванттық жүйенің ықтимал 
күйлерін жүйелеу және сипаттау. Бұл үшін жүйенің ішкі симметрияларын бейнелейтін кіші 
алгебралар тұрғысынан тұйықталған операторлық құрылымдарға сүйене отырып, жүйенің 
күй кеңістігі толқындық функциялар арқылы классификацияланады. Бұл тәсіл ротациялық 
күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді. 

𝑄𝑄3𝑀𝑀 = 𝐵𝐵3𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

3                                                      (1.16) 
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𝑄𝑄𝐿𝐿𝐿𝐿

+ = (−)𝑀𝑀𝑄𝑄𝐿𝐿−𝑀𝑀 
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және 
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02 + √7
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4 √30 ∑ (−)𝜆𝜆

𝜆𝜆 ( 2 2 1
𝑀𝑀 𝑀𝑀 −𝜆𝜆) 𝐼𝐼𝜆𝜆′                                   (1.18) 
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күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді. 

Бозондық жүйелер үшін квазиспиндік операторлар ұғымы енгізіледі: 
 

𝑆𝑆Г = ∑ (−)𝑚𝑚
𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙−𝑚𝑚;     𝑆𝑆Г

+ = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙
+

𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙−𝑚𝑚
+ (−)𝑚𝑚                                  (1.8) 

 
Енді, осы квазиспиндік операторларды пайдалана отырып, бастапқы Казимир операторын 

(1.9) түрінде қайта жазуға болады: 
 

     𝐶𝐶Г = 𝑁𝑁(𝑁𝑁 + Г − 2) − (𝑆𝑆Г
+𝑆𝑆Г)                                                  (1.9) 

 
Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген дұрыс 

болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. Сондықтан 
осы түрін келтіре аламыз 

 
𝑆𝑆Г

+𝑆𝑆Г = (𝑁𝑁 − 𝜐𝜐)(𝑁𝑁 + Г + 𝜐𝜐 − 2)                                                  (1.10) 
 

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
үшін теңдеулер жүйесі пайдаланылады. Бұл жерде ν — бозондардың жалпы саны, яғни 
жүйедегі сенсорлық кванттар саны ретінде қарастырылады. Біз Γ - өлшемді кеңістікте 
жүйенің симметриялық құрылымын талдай отырып, ss-және d-бозондарды қамтитын 
кеңістіктерге назар аударамыз. Бұл жағдайда 𝑙𝑙 = 0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s-бозон және бес түрлі d-бозондық күй бар. Демек, жалпы 
кеңістіктің өлшемі алтыға тең болады. 

Осы 𝑑𝑑−2, 𝑑𝑑−1, 𝑑𝑑0, 𝑑𝑑+1, 𝑑𝑑+2 кеңістікте әрекет ететін  𝐵𝐵(±) түріндегі бозондық операторлар 
саны Г2 = 36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ 
кеңістіктің ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді: 

1) Симметриялық комбинациялар (жұптық операторлар) 
 

𝐵𝐵00
(+)(00) = (𝑆𝑆+𝑆𝑆)0 = 𝑁𝑁𝑆𝑆,     𝐵𝐵00

(+)(22) = 1
√5 (𝑑𝑑+𝑑𝑑)0 = 1

√5 𝑁𝑁𝑑𝑑;            (1.11) 
 

Мұндағы N8 және Nd — сәйкесінше s- және d-бозондардың саны. 
квадрупольдік (екінші ретті) операторлар (L=2): 
 

𝑄𝑄𝑀𝑀
(+) = 1

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 1
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 + (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2    𝑄𝑄𝑀𝑀 = 𝐵𝐵2𝑀𝑀

22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀
2 ;          (1.12) 

 
гексадекапольдік (төртінші ретті) операторлар: 
 

                       𝑄𝑄4𝑀𝑀 = 𝐵𝐵2𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

4 ;                                (1.13) 
 

2) он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті 
 

𝐼𝐼𝑀𝑀 = −√10𝐵𝐵1𝑀𝑀
22 = −√10(𝑑𝑑+𝑑𝑑)𝑀𝑀

1                                 (1.14) 
 

квадрупольдік антисимметриялы оператор: 
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(−) = 𝑖𝑖

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 𝑖𝑖
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 − (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2                                (1.15) 

 
октаупольдік (үшінші ретті) оператордың жеті компоненті 
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Гамильтониандарды тек қана кейбір инвариантты операторлар арқылы өрнектеген дұрыс 

болады. Ондай инвариант операторларды Казимир операторлары деп те атайды. Сондықтан 
осы түрін келтіре аламыз 

 
𝑆𝑆Г

+𝑆𝑆Г = (𝑁𝑁 − 𝜐𝜐)(𝑁𝑁 + Г + 𝜐𝜐 − 2)                                                  (1.10) 
 

Кванттық жүйелердегі бозондық операторлардың симметриялы қасиеттерін сипаттау 
үшін теңдеулер жүйесі пайдаланылады. Бұл жерде ν — бозондардың жалпы саны, яғни 
жүйедегі сенсорлық кванттар саны ретінде қарастырылады. Біз Γ - өлшемді кеңістікте 
жүйенің симметриялық құрылымын талдай отырып, ss-және d-бозондарды қамтитын 
кеңістіктерге назар аударамыз. Бұл жағдайда 𝑙𝑙 = 0,2) болатын бозондар қарастырылады. 
Мұнда Γ=6 деп алынған, себебі бір s-бозон және бес түрлі d-бозондық күй бар. Демек, жалпы 
кеңістіктің өлшемі алтыға тең болады. 

Осы 𝑑𝑑−2, 𝑑𝑑−1, 𝑑𝑑0, 𝑑𝑑+1, 𝑑𝑑+2 кеңістікте әрекет ететін  𝐵𝐵(±) түріндегі бозондық операторлар 
саны Г2 = 36. Бұл операторлар U(6) унитарлық симметриялы топты түзеді. Бұл топ 
кеңістіктің ішкі құрылымын сипаттауға арналған және оны уақыт пен айналу симметриясына 
байланысты бірнеше ішкі топтарға бөлуге болады. Мұндай бөлініс симметриялық және 
антисимметриялық комбинацияларға негізделеді: 

1) Симметриялық комбинациялар (жұптық операторлар) 
 

𝐵𝐵00
(+)(00) = (𝑆𝑆+𝑆𝑆)0 = 𝑁𝑁𝑆𝑆,     𝐵𝐵00

(+)(22) = 1
√5 (𝑑𝑑+𝑑𝑑)0 = 1

√5 𝑁𝑁𝑑𝑑;            (1.11) 
 

Мұндағы N8 және Nd — сәйкесінше s- және d-бозондардың саны. 
квадрупольдік (екінші ретті) операторлар (L=2): 
 

𝑄𝑄𝑀𝑀
(+) = 1

2 (𝐵𝐵2𝑀𝑀
20 + 𝐵𝐵2𝑀𝑀

02 ) = 1
2 [𝑆𝑆+𝑑𝑑𝑀𝑀 + (−)𝑀𝑀𝑑𝑑−𝑀𝑀

+ 𝑆𝑆]𝑀𝑀
2    𝑄𝑄𝑀𝑀 = 𝐵𝐵2𝑀𝑀

22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀
2 ;          (1.12) 

 
гексадекапольдік (төртінші ретті) операторлар: 
 

                       𝑄𝑄4𝑀𝑀 = 𝐵𝐵2𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

4 ;                                (1.13) 
 

2) он бес антисимметриялы комбинация:бұрыштық моменттің үш компоненті 
 

𝐼𝐼𝑀𝑀 = −√10𝐵𝐵1𝑀𝑀
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октаупольдік (үшінші ретті) оператордың жеті компоненті 
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Уранның деформацияланған изотоптарының ядролық модельдеуіндегі әсерлесуші бозондар үлгісі

қолданылған QM
+ және QM операторларының орнына (1.12)-дегі өрнектерге арнайы 

түрде модификацияланған комбинациялар енгізіледі. Бұл жаңа операторлар симметрия 
мен операторлық алгебраны сақтап қалуға арналған. Атап айтқанда, келесі түрдегі 
өрнек енгізіледі:

         (1.17)

Жаңа енгізілген QM' операторларының өзара коммутациялық қатынастары мынадай 
алгебралық құрылымға бағынады:

                                (1.18)

Электрлік квадрупольдік ауысу үдерісін сипаттайтын Tk(E2) операторлары да мына 
түрде бейнеленеді:

      (1.19)

Осылайша, бозондық операторлар жүйесінің алгебралық құрылымын және одан 
туындайтын гамильтонианның топтық симметриясын толық меңгеру – кванттық 
жүйенің энергетикалық спектрін (өздік мәндерін) және оларға сәйкес келетін кванттық 
күй функцияларын (өздік функцияларды) анықтауға мүмкіндік береді. Басқаша 
айтқанда, бұл кванттық механикадағы спектрлік есепті шешудің іргелі қадамы болып 
табылады. Мәселені аналитикалық жолмен шешу үшін біз үш түрлі асимптотикалық 
шекті – яғни жүйенің белгілі бір идеалдандырылған физикалық режимдерін –  негізге 
аламыз. Мұндай шектерде есептеу едәуір жеңілдейді, өйткені күрделі өзара әрекеттесулер 
орнына жүйенің басым сипаттары ғана ескеріледі. Нәтижесінде, бұл әдістер атом 
ядроларының құрылымын зерттейтін ӘБМ (әлемдік бәсекеге қабілетті модельдер) 
шеңберінде тәжірибелік зерттеулермен тиімді біріктіріліп келеді.

Біздің жұмысымызда қарастырылатын негізгі мақсат – U(6)⊃SU(3)⊃0(3) асимпто-
тикалық шектерді қолдану арқылы кванттық жүйенің ықтимал күйлерін жүйелеу 
және сипаттау. Бұл үшін жүйенің ішкі симметрияларын бейнелейтін кіші алгебралар 
тұрғысынан тұйықталған операторлық құрылымдарға сүйене отырып, жүйенің күй 
кеңістігі толқындық функциялар арқылы класси-фикацияланады. Бұл тәсіл ротациялық 
күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді.

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәти-
желермен салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. 
Айта кету керек, қарастырылып отырған симметриялы топ – 8 генератордан тұратын 
унитарлық топ. Оның үш генераторы толық бұрыштық моменттің кеңістіктегі 
проекцияларына сәйкес келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инва-
рианттылығын қамтамасыз етеді:

                                          (1.20)

𝑄𝑄3𝑀𝑀 = 𝐵𝐵3𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

3                                                      (1.16) 
 

Жоғарыда берілген (1.11)–(1.16) формулалар арқылы анықталған барлық операторлар 
эрмиттік (өз-өзіне комплекссоқтасқан) қасиетке ие, бұл олардың физикалық реалды 
шамаларға сәйкестігін қамтамасыз етеді. Эрмиттік шарт кванттық операторлардың өздік 
мәндерінің нақты болуын қамтамасыз етеді және бұл операторлар нақты физикалық 
шамаларды сипаттайды, яғни 

 
𝑄𝑄𝐿𝐿𝐿𝐿

+ = (−)𝑀𝑀𝑄𝑄𝐿𝐿−𝑀𝑀 
 

 Алдында қарастырып өткен қосарланған операторларды енгізген соң, SU(6) 
симметриялық тобына сәйкес келетін бозондық жүйенің гамильтонианын (1.1)-формасында 
жазу күрделіге айналады. Себебі бастапқы түрде s+,s операторлары тек жүйенің негізгі күйін 
сипаттауға мүмкіндік береді, ал олардың қатысуы басқа энергетикалық күйлерге қатысты 
ақпаратты шектейді. Сондықтан бастапқы форма (1.1) гамильтонианнан алынып тасталады. 
Дегенмен, жүйедегі бозондар саны — яғни, N=Ns +Nd— тұрақты шама ретінде есепке алына 
береді. Осыған байланысты, бұрын қолданылған 

𝑄𝑄𝑀𝑀+

және 
𝑄𝑄𝑀𝑀

операторларының орнына 
(1.12)-дегі өрнектерге арнайы түрде модификацияланған комбинациялар енгізіледі. Бұл жаңа 
операторлар симметрия мен операторлық алгебраны сақтап қалуға арналған. Атап айтқанда, 
келесі түрдегі өрнек енгізіледі: 

𝑄𝑄𝑀𝑀
′ = 𝐵𝐵2𝑀𝑀

20 + 𝐵𝐵2𝑀𝑀
02 + √7

2 𝑄𝑄𝑀𝑀                                                 (1.17) 
 

Жаңа енгізілген 𝑄𝑄𝑀𝑀
′  операторларының өзара коммутациялық қатынастары мынадай 

алгебралық құрылымға бағынады: 
 

[𝑄𝑄𝑀𝑀
′ , 𝑄𝑄𝑀𝑀′

′ ] = − 3
4 √30 ∑ (−)𝜆𝜆

𝜆𝜆 ( 2 2 1
𝑀𝑀 𝑀𝑀 −𝜆𝜆) 𝐼𝐼𝜆𝜆′                                   (1.18) 

 
Электрлік квадрупольдік ауысу үдерісін сипаттайтын Tk(E2) операторлары да мына 

түрде бейнеленеді: 
 

𝑇𝑇𝑘𝑘(𝐸𝐸2) = 𝑞𝑞1[(𝑑𝑑+𝑠𝑠)𝑘𝑘
2 + (𝑠𝑠+𝑑𝑑)𝑘𝑘

(2)]
𝑘𝑘

(2)
+ 𝑞𝑞2(𝑑𝑑+𝑑𝑑)𝑘𝑘

(2) = 𝑞𝑞1𝑄𝑄𝜇𝜇
+ + 𝑞𝑞2𝑄𝑄𝜇𝜇                    (1.19) 

 
Осылайша, бозондық операторлар жүйесінің алгебралық құрылымын және одан 

туындайтын гамильтонианның топтық симметриясын толық меңгеру — кванттық жүйенің 
энергетикалық спектрін (өздік мәндерін) және оларға сәйкес келетін кванттық күй 
функцияларын (өздік функцияларды) анықтауға мүмкіндік береді. Басқаша айтқанда, бұл 
кванттық механикадағы спектрлік есепті шешудің іргелі қадамы болып табылады. Мәселені 
аналитикалық жолмен шешу үшін біз үш түрлі асимптотикалық шекті — яғни жүйенің 
белгілі бір идеалдандырылған физикалық режимдерін — негізге аламыз. Мұндай шектерде 
есептеу едәуір жеңілдейді, өйткені күрделі өзара әрекеттесулер орнына жүйенің басым 
сипаттары ғана ескеріледі. Нәтижесінде, бұл әдістер атом ядроларының құрылымын 
зерттейтін ӘБМ (әлемдік бәсекеге қабілетті модельдер) шеңберінде тәжірибелік 
зерттеулермен тиімді біріктіріліп келеді. 

Біздің жұмысымызда қарастырылатын негізгі мақсат —
𝑈𝑈(6) ⊃ 𝑆𝑆𝑆𝑆(3) ⊃ 0(3) асимптотикалық шектерді қолдану арқылы кванттық жүйенің ықтимал 
күйлерін жүйелеу және сипаттау. Бұл үшін жүйенің ішкі симметрияларын бейнелейтін кіші 
алгебралар тұрғысынан тұйықталған операторлық құрылымдарға сүйене отырып, жүйенің 
күй кеңістігі толқындық функциялар арқылы классификацияланады. Бұл тәсіл ротациялық 
күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді. 

𝑄𝑄3𝑀𝑀 = 𝐵𝐵3𝑀𝑀
22 = (𝑑𝑑+𝑑𝑑)𝑀𝑀

3                                                      (1.16) 
 

Жоғарыда берілген (1.11)–(1.16) формулалар арқылы анықталған барлық операторлар 
эрмиттік (өз-өзіне комплекссоқтасқан) қасиетке ие, бұл олардың физикалық реалды 
шамаларға сәйкестігін қамтамасыз етеді. Эрмиттік шарт кванттық операторлардың өздік 
мәндерінің нақты болуын қамтамасыз етеді және бұл операторлар нақты физикалық 
шамаларды сипаттайды, яғни 
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 Алдында қарастырып өткен қосарланған операторларды енгізген соң, SU(6) 
симметриялық тобына сәйкес келетін бозондық жүйенің гамильтонианын (1.1)-формасында 
жазу күрделіге айналады. Себебі бастапқы түрде s+,s операторлары тек жүйенің негізгі күйін 
сипаттауға мүмкіндік береді, ал олардың қатысуы басқа энергетикалық күйлерге қатысты 
ақпаратты шектейді. Сондықтан бастапқы форма (1.1) гамильтонианнан алынып тасталады. 
Дегенмен, жүйедегі бозондар саны — яғни, N=Ns +Nd— тұрақты шама ретінде есепке алына 
береді. Осыған байланысты, бұрын қолданылған 

𝑄𝑄𝑀𝑀+

және 
𝑄𝑄𝑀𝑀

операторларының орнына 
(1.12)-дегі өрнектерге арнайы түрде модификацияланған комбинациялар енгізіледі. Бұл жаңа 
операторлар симметрия мен операторлық алгебраны сақтап қалуға арналған. Атап айтқанда, 
келесі түрдегі өрнек енгізіледі: 

𝑄𝑄𝑀𝑀
′ = 𝐵𝐵2𝑀𝑀
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Жаңа енгізілген 𝑄𝑄𝑀𝑀
′  операторларының өзара коммутациялық қатынастары мынадай 

алгебралық құрылымға бағынады: 
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Электрлік квадрупольдік ауысу үдерісін сипаттайтын Tk(E2) операторлары да мына 

түрде бейнеленеді: 
 

𝑇𝑇𝑘𝑘(𝐸𝐸2) = 𝑞𝑞1[(𝑑𝑑+𝑠𝑠)𝑘𝑘
2 + (𝑠𝑠+𝑑𝑑)𝑘𝑘
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(2) = 𝑞𝑞1𝑄𝑄𝜇𝜇
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Осылайша, бозондық операторлар жүйесінің алгебралық құрылымын және одан 

туындайтын гамильтонианның топтық симметриясын толық меңгеру — кванттық жүйенің 
энергетикалық спектрін (өздік мәндерін) және оларға сәйкес келетін кванттық күй 
функцияларын (өздік функцияларды) анықтауға мүмкіндік береді. Басқаша айтқанда, бұл 
кванттық механикадағы спектрлік есепті шешудің іргелі қадамы болып табылады. Мәселені 
аналитикалық жолмен шешу үшін біз үш түрлі асимптотикалық шекті — яғни жүйенің 
белгілі бір идеалдандырылған физикалық режимдерін — негізге аламыз. Мұндай шектерде 
есептеу едәуір жеңілдейді, өйткені күрделі өзара әрекеттесулер орнына жүйенің басым 
сипаттары ғана ескеріледі. Нәтижесінде, бұл әдістер атом ядроларының құрылымын 
зерттейтін ӘБМ (әлемдік бәсекеге қабілетті модельдер) шеңберінде тәжірибелік 
зерттеулермен тиімді біріктіріліп келеді. 

Біздің жұмысымызда қарастырылатын негізгі мақсат —
𝑈𝑈(6) ⊃ 𝑆𝑆𝑆𝑆(3) ⊃ 0(3) асимптотикалық шектерді қолдану арқылы кванттық жүйенің ықтимал 
күйлерін жүйелеу және сипаттау. Бұл үшін жүйенің ішкі симметрияларын бейнелейтін кіші 
алгебралар тұрғысынан тұйықталған операторлық құрылымдарға сүйене отырып, жүйенің 
күй кеңістігі толқындық функциялар арқылы классификацияланады. Бұл тәсіл ротациялық 
күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді. 
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Жоғарыда берілген (1.11)–(1.16) формулалар арқылы анықталған барлық операторлар 
эрмиттік (өз-өзіне комплекссоқтасқан) қасиетке ие, бұл олардың физикалық реалды 
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Электрлік квадрупольдік ауысу үдерісін сипаттайтын Tk(E2) операторлары да мына 
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+ + 𝑞𝑞2𝑄𝑄𝜇𝜇                    (1.19) 

 
Осылайша, бозондық операторлар жүйесінің алгебралық құрылымын және одан 

туындайтын гамильтонианның топтық симметриясын толық меңгеру — кванттық жүйенің 
энергетикалық спектрін (өздік мәндерін) және оларға сәйкес келетін кванттық күй 
функцияларын (өздік функцияларды) анықтауға мүмкіндік береді. Басқаша айтқанда, бұл 
кванттық механикадағы спектрлік есепті шешудің іргелі қадамы болып табылады. Мәселені 
аналитикалық жолмен шешу үшін біз үш түрлі асимптотикалық шекті — яғни жүйенің 
белгілі бір идеалдандырылған физикалық режимдерін — негізге аламыз. Мұндай шектерде 
есептеу едәуір жеңілдейді, өйткені күрделі өзара әрекеттесулер орнына жүйенің басым 
сипаттары ғана ескеріледі. Нәтижесінде, бұл әдістер атом ядроларының құрылымын 
зерттейтін ӘБМ (әлемдік бәсекеге қабілетті модельдер) шеңберінде тәжірибелік 
зерттеулермен тиімді біріктіріліп келеді. 

Біздің жұмысымызда қарастырылатын негізгі мақсат —
𝑈𝑈(6) ⊃ 𝑆𝑆𝑆𝑆(3) ⊃ 0(3) асимптотикалық шектерді қолдану арқылы кванттық жүйенің ықтимал 
күйлерін жүйелеу және сипаттау. Бұл үшін жүйенің ішкі симметрияларын бейнелейтін кіші 
алгебралар тұрғысынан тұйықталған операторлық құрылымдарға сүйене отырып, жүйенің 
күй кеңістігі толқындық функциялар арқылы классификацияланады. Бұл тәсіл ротациялық 
күйдердің құрылымын, олардың энергия деңгейлерін және мүмкін болатын көшу 
процестерін терең түсінуге мүмкіндік береді. 

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 
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ал, бесеуі квадрупольдің компоненттері:

     			   (1.21)

Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 
компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік 
бұрыштық инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады.

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара 
жабық Ли алгебрасын құрайды, бұл – олардың коммутациялық қатынастарының 
нәтижесі бастапқы алгебраның шеңберінде қалатынын білдіреді:

                        (1.22)

Сонда SU(3) – симметриялы Гамильтониан

                           (1.23)

түрінде жазылып, оның өздік мәнін

                                      (1.24)

теңдігі арқылы өрнектейміз.
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың 

жалпы саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының 
түрліше (λ, μ) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N 
шамасы жүйенің конфигурациялық құрылымын топтық теория тұрғысынан класси-
фикациялаудың негізін қалайды. Осы көрсетулердің әрбіріне Казимир операторының 
C(λ, μ) белгілі бір меншікті мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен 
сипатталады:

      (1.25)
                         

теңдігі арқылы жазылады. 
Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 

жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
SU(3) топтарының (λ, μ) көрсетуі бойынша тізбектей жіктейміз.

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 

Аналитикалық түрде алынған теориялық шамалар кейіннен тәжірибелік нәтижелермен 
салыстырылып, модельдің дұрыстығы мен қолданбалы тиімділігі тексеріледі. Айта кету 
керек, қарастырылып отырған симметриялы топ — 8 генератордан тұратын унитарлық топ. 
Оның үш генераторы толық бұрыштық моменттің кеңістіктегі проекцияларына сәйкес 
келеді, яғни бұл операторлар жүйенің кеңістіктегі айналу инварианттылығын қамтамасыз 
етеді: 

𝐼𝐼𝜇𝜇 = −√10[𝑏𝑏2𝜇𝜇1,
+ 𝑏𝑏2𝜇𝜇2]𝜇𝜇

(2),                                                (1.20) 
 

ал, бесеуі квадрупольдің компоненттері: 
 

𝑄𝑄𝜇𝜇 = √2 {в00 
+ в2𝜇𝜇

+ (−)𝜇𝜇в2−𝜇𝜇 
+ в00

√7
2 [в2𝜇𝜇1,

+ в2𝜇𝜇2]𝜇𝜇
(2)}       (1.21) 

 
Егер біз (1.20)-формуласына сәйкес берілген толық бұрыштық моменттің жеке 

компоненттерін жеке-дара қарастыратын болсақ, онда бұл операторлар үш өлшемді 
кеңістіктегі айналулар симметриясын сипаттайтын, кеңінен танымал SO(3) тобының 
генераторлары екені анықталады. Басқаша айтқанда, бұл үш оператор кеңістіктік бұрыштық 
инварианттылықты қамтамасыз ететін симметрияларды жүзеге асырады. 

Сонымен қатар, (1.20) және (1.21)-өрнектерінде анықталған сегіз оператор өзара жабық 
Ли алгебрасын құрайды, бұл — олардың коммутациялық қатынастарының нәтижесі 
бастапқы алгебраның шеңберінде қалатынын білдіреді: 

 

[𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = 3
4 √30(−)𝜇𝜇 (2 2 1

𝜇𝜇 𝜇𝜇′ −𝜇𝜇) 𝐼𝐼𝜇𝜇 

  [𝑄𝑄𝜇𝜇, 𝑄𝑄𝜇𝜇′] = √30(−)𝜇𝜇+1 (2 2 2
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝑄𝑄𝜇𝜇     

                            

(1.22) 

[𝐼𝐼𝜇𝜇, 𝐼𝐼𝜇𝜇′] = √6(−)𝜇𝜇+1 (1 1 1
𝜇𝜇 𝜇𝜇′ 𝜇𝜇) 𝐼𝐼𝜇𝜇 

 
Сонда SU(3) - симметриялы Гамильтониан 
 

𝐻𝐻 = −𝜒𝜒 ∑ 𝑄𝑄𝜇𝜇𝑄𝑄−𝜇𝜇 − 𝜒𝜒′𝐼𝐼𝜇𝜇
2

𝜇𝜇                                    (1.23) 
 

түрінде жазылып, оның өздік мәнін 
 

𝐸𝐸 = −𝜒𝜒𝜒𝜒(𝜆𝜆, 𝜇𝜇) + (3
4 𝜒𝜒 − 𝜒𝜒′) 𝐼𝐼𝜇𝜇

2                                           (1.24) 
 

теңдігі арқылы өрнектейміз. 
Кванттық жүйенің сипаттамасын толықтай жүргізу үшін ең алдымен бозондардың жалпы 

саны N SU(3) ерекше назар аудару қажет. Бұл шама U(6) симметриялы тобының түрліше 
(𝜆𝜆, 𝜇𝜇) көрсетулерінің кеңістіктегі көрінісін анықтайды. Басқаша айтқанда, N шамасы жүйенің 
конфигурациялық құрылымын топтық теория тұрғысынан классификациялаудың негізін 
қалайды. Осы көрсетулердің әрбіріне Казимир операторының 𝐶𝐶(𝜆𝜆, 𝜇𝜇) белгілі бір меншікті 
мәні сәйкес келеді, ал бұл мән төмендегідей қатынаспен сипатталады: 

 
                                             𝐶𝐶(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆(𝜆𝜆 + 3) + 𝜇𝜇(𝜇𝜇 + 3) + 𝜆𝜆                                        (1.25) 

 
теңдігі арқылы жазылады.  

Бұдан әрі біз кванттық күйлерді қарастырылып отырған операторлық тізбекке сәйкес 
жүйелеп сипаттауға кірісеміз. Бұл үшін U(6) тобына тән симметриялы бейнелеуді оның 
𝑆𝑆𝑆𝑆(3) топтарының (𝜆𝜆, 𝜇𝜇) көрсетуі бойынша тізбектей жіктейміз. 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ.
Физика. Астрономия сериясы
ISSN: 2616-6836. eISSN: 2663-1296

№2(151)/ 2025 67

Уранның деформацияланған изотоптарының ядролық модельдеуіндегі әсерлесуші бозондар үлгісі

Жүйелеудің әдістемесі ең қарапайым – нөлдік бозоннан басталып, біртіндеп бозон 
санының артуымен күрделенетін конфигурацияларға дейін жүргізіледі. Алдымен бозон 
жоқ күй үшін [N=0]=(0,0); бір ғана бозоны бар күй үшін [N=1]=(2,0)⊕(1,0).

Ал егер күйде екі бозон бар болса онда Юнг схемасы:
                       

 [N=2]=((2,0)+(1,0))⊕((2,0)+1,0))=(4,0)+(0,2)+(3,0)+(1,1)+(2,0)                   (1.26)

Осы принципті сақтай отырып, үш, төрт және одан да көп бозондар қатысқан күйлер 
үшін Юнг диаграммаларын біртіндеп кеңейтіп, толық симметриялы көрсетулерді алуға 
болады. Осылайша, біз U(6) тобының барлық мүмкін көрсетулеріне сәйкес келетін 
бозондық күйлердің толық жіктеуін құрамыз.

	 (1.27)

Бұл жерде екі ғана еркін параметр бар. Олар: 

Жүйелеудің әдістемесі ең қарапайым — нөлдік бозоннан басталып, біртіндеп бозон санының 
артуымен күрделенетін конфигурацияларға дейін жүргізіледі. Алдымен бозон жоқ күй үшін 
[𝑁𝑁 = 0] = (0,0); бір ғана бозоны бар күй үшін [𝑁𝑁 = 1] = (2,0) ⊕ (1,0). 

Ал егер күйде екі бозон бар болса онда Юнг схемасы: 
[𝑁𝑁 = 2] = ((2,0) + (1,0)) ⊕ ((2,0) + 1,0)) = (4,0) + (0,2) + (3,0) + (1,1) + (2,0) (1.26) 
Осы принципті сақтай отырып, үш, төрт және одан да көп бозондар қатысқан күйлер үшін 

Юнг диаграммаларын біртіндеп кеңейтіп, толық симметриялы көрсетулерді алуға болады. 
Осылайша, біз U(6) тобының барлық мүмкін көрсетулеріне сәйкес келетін бозондық 
күйлердің толық жіктеуін құрамыз. 

 

[𝑁𝑁] = (2𝑁𝑁, 0)⨁(2𝑁𝑁 = 4,2)⨁ ∙∙∙ + { 0, 𝑁𝑁 (𝑁𝑁 −  жұп)
2, 𝑁𝑁 − 1 (𝑁𝑁 −  тақ)} + 

+⨁(2𝑁𝑁 − 2,0)⨁(2𝑁𝑁 − 4,1)⨁ ∙∙∙ (2𝑁𝑁 − 4,0)⨁ ∙∙∙ ⨁(2𝑁𝑁 − 6,0)⨁(2𝑁𝑁 − 10,2)⨁ ∙∙∙ (1.27) 
 

Бұл жерде екі ғана еркін параметр бар. Олар: 𝜒𝜒 = 5 кэВ, 3
4 𝜒𝜒 − 𝜒𝜒′ = 10 кэВ шамасында 

таңдалып алынған.  
 

Нәтижелер мен талқылау  
 
Сфералық ядро құрылымындағы электромагниттік  ауысулар және олардың Ru 
изотоптарына әсері 

Зерттеу жұмысымызда SU(3) симметриясының шектеулі нұсқасы аясындағы теориялық 
спектрлерде байқалатын ротациялық заңдылықтарды верификациялау мақсатында ауыр 
элементтер тобына жататын актиноидты ядролар объект ретінде қарастырылады. Атап 
айтқанда, атомдық массалары A=234,236,238 болатын жұп-жұп изотоптары бар Уран 
ядроларының энергетикалық күйлерінің құрылымы теориялық болжамдармен 
салыстырылмалы түрде талданады. Бұл салыстыру процесі ядролық спектроскопиядағы 
іргелі мәселелердің бірі болып табылады, себебі ол ядроішілік күштердің табиғаты мен 
ядролық құрылымның ерекшеліктерін тереңірек түсінуге мүмкіндік береді. 

Теориялық модельдегі болжамдарды эксперименттік мәліметтермен сәйкестендіру үшін 

екі негізгі параметр таңдап алынады. Бірінші параметр,
3
4 𝜒𝜒 − 𝜒𝜒′, (2𝑁𝑁, 0) негізгі жолақтың 

бірінші қозған 2+ деңгейінің энергия мәнімен салыстырыла отырып анықталады. Мұндағы χ 
және χ′ теориялық модельдің өзіне тән параметрлері болып табылады және олар ядроішілік 
өзара әрекеттесулердің күшін сипаттайды. Екінші параметр, χ−ні, (2𝑁𝑁 − 4,2) жолақтың 
бірінші қозған 2+ деңгейінің энергетикалық мәніне сәйкестендіріледі. Бұл жердегі η да 
теориялық модельдің құрамдас бөлігі ретінде енгізілген қосымша параметр болып табылады. 

Бұл табылған параметрлер 2-кестеде берілген. 
 
1-кесте. Уранның 234,236,238U изотоптары үшін теорияның параметр 

мәндері 
Ядро N 𝜒𝜒 (кэВ) 3

4 𝜒𝜒 − 𝜒𝜒′ (кэВ) 
234U 13 5,40 6,67 
236U 14 5,67 6,57 
238U 15 5,72 6,50 

 
Ауыр элементтердің изотоптық тізбегін зерттеу аясында жүргізілген спектроскопиялық 

талдау нәтижелері көрсеткендей, теориялық модельдегі сәйкестендірілген параметрлердің 
атомдық массаның өсуіне байланысты қарама-қарсы тенденциялары байқалады. Атап 
айтқанда, бірінші реттегі параметрдің мәні изотоптардың массалық сандары артқан сайын 
елеулі түрде өсу үрдісін танытса, екінші параметр керісінше, массалық санның ұлғаюымен 

 шамасында 
таңдалып алынған. 

Нәтижелер мен талқылау 

Сфералық ядро құрылымындағы электромагниттік  ауысулар және олардың Ru 
изотоптарына әсері

Зерттеу жұмысымызда SU(3) симметриясының шектеулі нұсқасы аясындағы тео-
риялық спектрлерде байқалатын ротациялық заңдылықтарды верификациялау 
мақсатында ауыр элементтер тобына жататын актиноидты ядролар объект ретінде 
қарастырылады. Атап айтқанда, атомдық массалары A=234, 236, 238 болатын жұп-жұп 
изотоптары бар Уран ядроларының энергетикалық күйлерінің құрылымы теориялық 
болжамдармен салыстырылмалы түрде талданады. Бұл салыстыру процесі ядролық 
спектроскопиядағы іргелі мәселелердің бірі болып табылады, себебі ол ядроішілік 
күштердің табиғаты мен ядролық құрылымның ерекшеліктерін тереңірек түсінуге 
мүмкіндік береді.

Теориялық модельдегі болжамдарды эксперименттік мәліметтермен сәйкестендіру 
үшін екі негізгі параметр таңдап алынады. Бірінші параметр, 3/4 χ-χ^',(2N,0) негізгі 
жолақтың бірінші қозған 2+ деңгейінің энергия мәнімен салыстырыла отырып 
анықталады. Мұндағы χ және χ′ теориялық модельдің өзіне тән параметрлері болып 
табылады және олар ядроішілік өзара әрекеттесулердің күшін сипаттайды. Екінші 
параметр, χ−ні, (2N-4,2) жолақтың бірінші қозған 2+ деңгейінің энергетикалық мәніне 
сәйкестендіріледі. Бұл жердегі η да теориялық модельдің құрамдас бөлігі ретінде 
енгізілген қосымша параметр болып табылады.

Бұл табылған параметрлер 2-кестеде берілген.

Жүйелеудің әдістемесі ең қарапайым — нөлдік бозоннан басталып, біртіндеп бозон санының 
артуымен күрделенетін конфигурацияларға дейін жүргізіледі. Алдымен бозон жоқ күй үшін 
[𝑁𝑁 = 0] = (0,0); бір ғана бозоны бар күй үшін [𝑁𝑁 = 1] = (2,0) ⊕ (1,0). 

Ал егер күйде екі бозон бар болса онда Юнг схемасы: 
[𝑁𝑁 = 2] = ((2,0) + (1,0)) ⊕ ((2,0) + 1,0)) = (4,0) + (0,2) + (3,0) + (1,1) + (2,0) (1.26) 
Осы принципті сақтай отырып, үш, төрт және одан да көп бозондар қатысқан күйлер үшін 

Юнг диаграммаларын біртіндеп кеңейтіп, толық симметриялы көрсетулерді алуға болады. 
Осылайша, біз U(6) тобының барлық мүмкін көрсетулеріне сәйкес келетін бозондық 
күйлердің толық жіктеуін құрамыз. 

 

[𝑁𝑁] = (2𝑁𝑁, 0)⨁(2𝑁𝑁 = 4,2)⨁ ∙∙∙ + { 0, 𝑁𝑁 (𝑁𝑁 −  жұп)
2, 𝑁𝑁 − 1 (𝑁𝑁 −  тақ)} + 

+⨁(2𝑁𝑁 − 2,0)⨁(2𝑁𝑁 − 4,1)⨁ ∙∙∙ (2𝑁𝑁 − 4,0)⨁ ∙∙∙ ⨁(2𝑁𝑁 − 6,0)⨁(2𝑁𝑁 − 10,2)⨁ ∙∙∙ (1.27) 
 

Бұл жерде екі ғана еркін параметр бар. Олар: 𝜒𝜒 = 5 кэВ, 3
4 𝜒𝜒 − 𝜒𝜒′ = 10 кэВ шамасында 

таңдалып алынған.  
 

Нәтижелер мен талқылау  
 
Сфералық ядро құрылымындағы электромагниттік  ауысулар және олардың Ru 
изотоптарына әсері 

Зерттеу жұмысымызда SU(3) симметриясының шектеулі нұсқасы аясындағы теориялық 
спектрлерде байқалатын ротациялық заңдылықтарды верификациялау мақсатында ауыр 
элементтер тобына жататын актиноидты ядролар объект ретінде қарастырылады. Атап 
айтқанда, атомдық массалары A=234,236,238 болатын жұп-жұп изотоптары бар Уран 
ядроларының энергетикалық күйлерінің құрылымы теориялық болжамдармен 
салыстырылмалы түрде талданады. Бұл салыстыру процесі ядролық спектроскопиядағы 
іргелі мәселелердің бірі болып табылады, себебі ол ядроішілік күштердің табиғаты мен 
ядролық құрылымның ерекшеліктерін тереңірек түсінуге мүмкіндік береді. 

Теориялық модельдегі болжамдарды эксперименттік мәліметтермен сәйкестендіру үшін 

екі негізгі параметр таңдап алынады. Бірінші параметр,
3
4 𝜒𝜒 − 𝜒𝜒′, (2𝑁𝑁, 0) негізгі жолақтың 

бірінші қозған 2+ деңгейінің энергия мәнімен салыстырыла отырып анықталады. Мұндағы χ 
және χ′ теориялық модельдің өзіне тән параметрлері болып табылады және олар ядроішілік 
өзара әрекеттесулердің күшін сипаттайды. Екінші параметр, χ−ні, (2𝑁𝑁 − 4,2) жолақтың 
бірінші қозған 2+ деңгейінің энергетикалық мәніне сәйкестендіріледі. Бұл жердегі η да 
теориялық модельдің құрамдас бөлігі ретінде енгізілген қосымша параметр болып табылады. 

Бұл табылған параметрлер 2-кестеде берілген. 
 
1-кесте. Уранның 234,236,238U изотоптары үшін теорияның параметр 

мәндері 
Ядро N 𝜒𝜒 (кэВ) 3

4 𝜒𝜒 − 𝜒𝜒′ (кэВ) 
234U 13 5,40 6,67 
236U 14 5,67 6,57 
238U 15 5,72 6,50 

 
Ауыр элементтердің изотоптық тізбегін зерттеу аясында жүргізілген спектроскопиялық 

талдау нәтижелері көрсеткендей, теориялық модельдегі сәйкестендірілген параметрлердің 
атомдық массаның өсуіне байланысты қарама-қарсы тенденциялары байқалады. Атап 
айтқанда, бірінші реттегі параметрдің мәні изотоптардың массалық сандары артқан сайын 
елеулі түрде өсу үрдісін танытса, екінші параметр керісінше, массалық санның ұлғаюымен 
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1-кесте. Уранның 234,236,238U изотоптары үшін теорияның параметр мәндері

Ядро N χ (кэВ)

Жүйелеудің әдістемесі ең қарапайым — нөлдік бозоннан басталып, біртіндеп бозон санының 
артуымен күрделенетін конфигурацияларға дейін жүргізіледі. Алдымен бозон жоқ күй үшін 
[𝑁𝑁 = 0] = (0,0); бір ғана бозоны бар күй үшін [𝑁𝑁 = 1] = (2,0) ⊕ (1,0). 

Ал егер күйде екі бозон бар болса онда Юнг схемасы: 
[𝑁𝑁 = 2] = ((2,0) + (1,0)) ⊕ ((2,0) + 1,0)) = (4,0) + (0,2) + (3,0) + (1,1) + (2,0) (1.26) 
Осы принципті сақтай отырып, үш, төрт және одан да көп бозондар қатысқан күйлер үшін 

Юнг диаграммаларын біртіндеп кеңейтіп, толық симметриялы көрсетулерді алуға болады. 
Осылайша, біз U(6) тобының барлық мүмкін көрсетулеріне сәйкес келетін бозондық 
күйлердің толық жіктеуін құрамыз. 

 

[𝑁𝑁] = (2𝑁𝑁, 0)⨁(2𝑁𝑁 = 4,2)⨁ ∙∙∙ + { 0, 𝑁𝑁 (𝑁𝑁 −  жұп)
2, 𝑁𝑁 − 1 (𝑁𝑁 −  тақ)} + 

+⨁(2𝑁𝑁 − 2,0)⨁(2𝑁𝑁 − 4,1)⨁ ∙∙∙ (2𝑁𝑁 − 4,0)⨁ ∙∙∙ ⨁(2𝑁𝑁 − 6,0)⨁(2𝑁𝑁 − 10,2)⨁ ∙∙∙ (1.27) 
 

Бұл жерде екі ғана еркін параметр бар. Олар: 𝜒𝜒 = 5 кэВ, 3
4 𝜒𝜒 − 𝜒𝜒′ = 10 кэВ шамасында 

таңдалып алынған.  
 

Нәтижелер мен талқылау  
 
Сфералық ядро құрылымындағы электромагниттік  ауысулар және олардың Ru 
изотоптарына әсері 

Зерттеу жұмысымызда SU(3) симметриясының шектеулі нұсқасы аясындағы теориялық 
спектрлерде байқалатын ротациялық заңдылықтарды верификациялау мақсатында ауыр 
элементтер тобына жататын актиноидты ядролар объект ретінде қарастырылады. Атап 
айтқанда, атомдық массалары A=234,236,238 болатын жұп-жұп изотоптары бар Уран 
ядроларының энергетикалық күйлерінің құрылымы теориялық болжамдармен 
салыстырылмалы түрде талданады. Бұл салыстыру процесі ядролық спектроскопиядағы 
іргелі мәселелердің бірі болып табылады, себебі ол ядроішілік күштердің табиғаты мен 
ядролық құрылымның ерекшеліктерін тереңірек түсінуге мүмкіндік береді. 

Теориялық модельдегі болжамдарды эксперименттік мәліметтермен сәйкестендіру үшін 

екі негізгі параметр таңдап алынады. Бірінші параметр,
3
4 𝜒𝜒 − 𝜒𝜒′, (2𝑁𝑁, 0) негізгі жолақтың 

бірінші қозған 2+ деңгейінің энергия мәнімен салыстырыла отырып анықталады. Мұндағы χ 
және χ′ теориялық модельдің өзіне тән параметрлері болып табылады және олар ядроішілік 
өзара әрекеттесулердің күшін сипаттайды. Екінші параметр, χ−ні, (2𝑁𝑁 − 4,2) жолақтың 
бірінші қозған 2+ деңгейінің энергетикалық мәніне сәйкестендіріледі. Бұл жердегі η да 
теориялық модельдің құрамдас бөлігі ретінде енгізілген қосымша параметр болып табылады. 

Бұл табылған параметрлер 2-кестеде берілген. 
 
1-кесте. Уранның 234,236,238U изотоптары үшін теорияның параметр 

мәндері 
Ядро N 𝜒𝜒 (кэВ) 3

4 𝜒𝜒 − 𝜒𝜒′ (кэВ) 
234U 13 5,40 6,67 
236U 14 5,67 6,57 
238U 15 5,72 6,50 

 
Ауыр элементтердің изотоптық тізбегін зерттеу аясында жүргізілген спектроскопиялық 

талдау нәтижелері көрсеткендей, теориялық модельдегі сәйкестендірілген параметрлердің 
атомдық массаның өсуіне байланысты қарама-қарсы тенденциялары байқалады. Атап 
айтқанда, бірінші реттегі параметрдің мәні изотоптардың массалық сандары артқан сайын 
елеулі түрде өсу үрдісін танытса, екінші параметр керісінше, массалық санның ұлғаюымен 

234U 13 5,40 6,67
236U 14 5,67 6,57
238U 15 5,72 6,50

Ауыр элементтердің изотоптық тізбегін зерттеу аясында жүргізілген спектроскопия-
лық талдау нәтижелері көрсеткендей, теориялық модельдегі сәйкестендірілген пара-
метрлердің атомдық массаның өсуіне байланысты қарама-қарсы тенденциялары 
байқалады. Атап айтқанда, бірінші реттегі параметрдің мәні изотоптардың массалық 
сандары артқан сайын елеулі түрде өсу үрдісін танытса, екінші параметр керісінше, 
массалық санның ұлғаюымен біртіндеп төмендеу динамикасын көрсетеді. Бұл бақы-
ланған корреляциялар ядроішілік өзара әрекеттесулердің массалық санға тәуелділігі 
туралы маңызды ақпарат береді.

Алынған оптималды параметрлер негізінде құрастырылған ядролық изотоптардың 
қозған күйлерінің энергетикалық спектрлері 2-суретте визуалды түрде ұсынылған. 
Теориялық есептеулер нәтижесінде алынған энергетикалық деңгейлердің орналасуы 
эксперименттік мәліметтермен жоғары дәрежеде үйлесімділік танытады. Дегенмен, 
қозған күйлердің спиндік мәндерінің өсуімен бірге теориялық және эксперименттік 
энергия шамалары арасындағы аздаған алшақтық байқалады. Бұл айырмашылық 
жоғары спиндік күйлердің құрылымын сипаттауда теориялық модельдің шектеулігін 
немесе қосымша әсерлердің маңыздылығын көрсетуі мүмкін. Тәжірибелік зерттеулерде 
β және γ жолақтарына тиесілі жоғары энергетикалық деңгейлер туралы мәліметтердің 
шектеулі болуы осы жолақтардың құрылымын толыққанды талдауды қиындатады.

Анықталған энергетикалық деңгейлердің толқындық функцияларын есептеу прин-
ципиалды қиындық тудырмайды және бұл функциялар ядроішілік құрылым туралы 
терең түсінік алуға мүмкіндік береді. Есептелген толқындық функцияларды пайдалана 
отырып, әртүрлі қозған күйлер арасындағы кванттық ауысулар нәтижесінде пайда 
болатын электромагниттік сәулеленудің интенсивтіліктерін болжауға болады.

Қарастырылып отырған теориялық формализмді ядролардағы электромагниттік 
ауысу процестеріне қолданудың ғылыми маңызы зор. Электромагниттік сәулеленудің 
интенсивтіліктерін дәл болжау арқылы теориялық модельде анықталған күйлердің 
толқындық функцияларының ақиқаттығын және оның қолданылу аясын эмпирикалық 
тұрғыдан тексеруге мүмкіндік туады. Бұл, өз кезегінде, ядролық құрылымның теориялық 
сипаттамасының сенімділігін арттырады U(6) – тобы генераторлары арқылы T(E2) 
операторын

(2.1)

Мұндағы Qμ – ядроның квадрупольдік операторы, α2 – эффективтік E2 – заряды. 

біртіндеп төмендеу динамикасын көрсетеді. Бұл бақыланған корреляциялар ядроішілік өзара 
әрекеттесулердің массалық санға тәуелділігі туралы маңызды ақпарат береді. 

Алынған оптималды параметрлер негізінде құрастырылған ядролық изотоптардың қозған 
күйлерінің энергетикалық спектрлері 2 - суретте визуалды түрде ұсынылған. Теориялық 
есептеулер нәтижесінде алынған энергетикалық деңгейлердің орналасуы эксперименттік 
мәліметтермен жоғары дәрежеде үйлесімділік танытады. Дегенмен, қозған күйлердің 
спиндік мәндерінің өсуімен бірге теориялық және эксперименттік энергия шамалары 
арасындағы аздаған алшақтық байқалады. Бұл айырмашылық жоғары спиндік күйлердің 
құрылымын сипаттауда теориялық модельдің шектеулігін немесе қосымша әсерлердің 
маңыздылығын көрсетуі мүмкін. Тәжірибелік зерттеулерде β және γ жолақтарына тиесілі 
жоғары энергетикалық деңгейлер туралы мәліметтердің шектеулі болуы осы жолақтардың 
құрылымын толыққанды талдауды қиындатады. 

Анықталған энергетикалық деңгейлердің толқындық функцияларын есептеу 
принципиалды қиындық тудырмайды және бұл функциялар ядроішілік құрылым туралы 
терең түсінік алуға мүмкіндік береді. Есептелген толқындық функцияларды пайдалана 
отырып, әртүрлі қозған күйлер арасындағы кванттық ауысулар нәтижесінде пайда болатын 
электромагниттік сәулеленудің интенсивтіліктерін болжауға болады. 

Қарастырылып отырған теориялық формализмді ядролардағы электромагниттік ауысу 
процестеріне қолданудың ғылыми маңызы зор. Электромагниттік сәулеленудің 
интенсивтіліктерін дәл болжау арқылы теориялық модельде анықталған күйлердің 
толқындық функцияларының ақиқаттығын және оның қолданылу аясын эмпирикалық 
тұрғыдан тексеруге мүмкіндік туады. Бұл, өз кезегінде, ядролық құрылымның теориялық 
сипаттамасының сенімділігін арттырады U(6) - тобы генераторлары арқылы 

𝑇𝑇(𝐸𝐸2)
 

операторын 
 

𝑇𝑇𝜇𝜇(𝐸𝐸2) = 𝑞𝑞1(в00+ в2𝜇𝜇 + (−)𝜇𝜇в2−𝜇𝜇+ в00) + 𝑞𝑞1[в2𝜇𝜇1+ в2𝜇𝜇1]𝜇𝜇(2) = 𝛼𝛼2𝑄𝑄𝜇𝜇  (2.1) 
 

Мұндағы 𝑄𝑄𝜇𝜇 − ядроның квадрупольдік операторы, 𝛼𝛼2 − эффективтік 𝐸𝐸2 − заряды.  
Алынған өрнек бойынша (2𝑁𝑁, 0) болуы үшін келтірілген матрицалық элемент 𝐵𝐵(𝐸𝐸2, 𝐼𝐼 →

𝐼𝐼 − 2) мәні: 
 

𝐵𝐵(𝐸𝐸2, 𝐼𝐼 → 𝐼𝐼 − 2) = 𝛼𝛼22 ∙
3
4 ∙

𝐼𝐼(𝐼𝐼+1)
(2𝐼𝐼+1)(2𝐼𝐼−1) ∙ (2𝑁𝑁 − 𝐼𝐼 + 2)(2𝑁𝑁 + 𝐼𝐼 + 1)  (2.2) 

 
түрінде жазамыз.. 
Атом ядроларындағы электрлік квадрупольдік ауысуларды сипаттау мақсатында, біз 

A=234,236,238A болатын уран изотоптарына қатысты B(E2) ықтималдық шамаларын есептік 
тұрғыда бағаладық. Бұл есептеулер алдыңғы тарауда қарастырылған теориялық модельдің 
негізінде жүргізілді. Алынған нәтижелер сәйкесінше қолда бар спектроскопиялық 
тәжірибелік деректермен салыстырылып, олардың арасындағы үйлесімділік деңгейі мұқият 
талданды. Жүргізілген салыстыру нәтижесінде, әсіресе негізгі ротациялық жолақтың төменгі 
спиндік күйлері арасындағы E2 ауысулары үшін есептік және өлшенген шамалар арасында 
жақсы сәйкестік байқалды. 

Аталған уран изотоптарының (234,236,238U) негізгі жолақ құрылымындағы ауысулардың 
ықтималдық шамалары 2-кестеде Вайскопф бірлігінде келтірілген. Есептеулерде тек бір 
еркін параметр пайдаланылды, ол нақты бір эксперименттік E2 ауысу мәнімен сәйкестендіру 
арқылы анықталды. Бұл параметрді таңдау есептік модельдің сенімділігін арттырды. 

Алынған B(E2) шамаларының энергетикалық күйге тәуелділігі төменнен жоғарыға қарай 
бастапқыда өсуімен, кейін белгілі бір максимумнан соң бәсеңдеуімен сипатталады. Мұндай 
бейсызық тәуелділік бөлшектер санының шектеулі болуымен немесе модельдік шектермен 
байланысты болуы ықтимал. 
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Уранның деформацияланған изотоптарының ядролық модельдеуіндегі әсерлесуші бозондар үлгісі

Алынған өрнек бойынша (2N,0) болуы үшін келтірілген матрицалық элемент 
B(E2,I→I-2) мәні:

(2.2)

түрінде жазамыз..
Атом ядроларындағы электрлік квадрупольдік ауысуларды сипаттау мақсатында, біз 

A=234,236,238A болатын уран изотоптарына қатысты B(E2) ықтималдық шамаларын 
есептік тұрғыда бағаладық. Бұл есептеулер алдыңғы тарауда қарастырылған 
теориялық модельдің негізінде жүргізілді. Алынған нәтижелер сәйкесінше қолда бар 
спектроскопиялық тәжірибелік деректермен салыстырылып, олардың арасындағы 
үйлесімділік деңгейі мұқият талданды. Жүргізілген салыстыру нәтижесінде, әсіресе 
негізгі ротациялық жолақтың төменгі спиндік күйлері арасындағы E2 ауысулары үшін 
есептік және өлшенген шамалар арасында жақсы сәйкестік байқалды.

Аталған уран изотоптарының (234,236,238U) негізгі жолақ құрылымындағы ауысулардың 
ықтималдық шамалары 2-кестеде Вайскопф бірлігінде келтірілген. Есептеулерде тек 
бір еркін параметр пайдаланылды, ол нақты бір эксперименттік E2 ауысу мәнімен 
сәйкестендіру арқылы анықталды. Бұл параметрді таңдау есептік модельдің сенімділігін 
арттырды.

Алынған B(E2) шамаларының энергетикалық күйге тәуелділігі төменнен жоғарыға 
қарай бастапқыда өсуімен, кейін белгілі бір максимумнан соң бәсеңдеуімен сипатталады. 
Мұндай бейсызық тәуелділік бөлшектер санының шектеулі болуымен немесе модельдік 
шектермен байланысты болуы ықтимал.

Егер ауысулар бойынша орташа ықтимал мәндерге сәйкес келетін тиімді заряд 
Егер ауысулар бойынша орташа ықтимал мәндерге сәйкес келетін тиімді заряд 21+ → 01+ 

параметрі таңдалғанда, теориялық және тәжірибелік мәндердің сәйкес келу дәлдігі бұдан да 
жоғары болар еді. Алайда, біз есептеулерде сенімділігі жоғары эксперименттік мәнімен 
ерекшеленетін нақты бір ауысуды бастапқы параметр ретінде алдық. Айта кету керек, басқа 
ротациялық күйлер арасындағы көптеген E2 ауысуларына қатысты тәжірибелік деректер 
әзірге жеткіліксіз күйде қалып отыр. 

 
2-кесте. 234,236,238U ядроларындағы Вайскопф бірлігінде берілген  

Е𝟐𝟐 −ауысуларының 𝐵𝐵(𝐸𝐸2, 𝐼𝐼𝑖𝑖 → 𝐼𝐼𝑓𝑓) эксперименттік және теориялық мәндері. 

 
Негізгі күйлердің энергиясы мен электромагниттік сәуле шығару интенсивтілігін 

сипаттауда тек s- және d-бозондармен шектелу жеткіліксіз екенін атап өту қажет. Себебі, 
тәжірибелік деректер ауыр ядролардың, соның ішінде актинойдтар тобына жататын 
ядролардың энергетикалық спектрінде теріс паритетті деңгейлердің бар екенін растайды. Бұл 
деңгейлер, әдетте, негізгі ротациялық жолақтың жанында орналасып, онымен ұқсас спиндік 
құрылымға ие болады. Мұндай деңгейлердің болуын есепке алу үшін, кемінде ppp- және f-
типті бозондардың үлесін қарастыру қажет, әсіресе теріс жұптылықтағы ауысуларды 
сипаттау барысында олардың әсері елеулі болуы мүмкін. 

Жоғарыда аталған қосымша бозондарды енгізу арқылы ядро құрылымын неғұрлым нақты 
сипаттауға мүмкіндік туады. Бұл тұрғыда халықаралық ғылыми әдебиетте жүргізілген 
көптеген теориялық жұмыстарды атап өтуге болады. 

Соған қарамастан, тек s- және d-бозондарымен шектелген қарапайымдылығы жоғары 
моделіміздің өзі Уранның үш ауыр изотопының төменгі энергетикалық күйлерін сипаттауда 
айтарлықтай нәтижелі үлгілерді қамтамасыз етуде. Бұл теориялық жақындаудың тиімділігі 
есептеулер мен тәжірибелік нәтижелер арасындағы үйлесімділік арқылы дәлелденіп отыр. 

 
Қорытынды 

 
Сфералық симметриялы ядролардың ішкі құрылымын сипаттауға бағытталған ЭӨБМ 

(Эффективті Өрістік Байланыс Моделі) бастапқы кезеңінде теориялық және эксперименттік 
деректердің арасында кейбір алшақтықтардың орын алуына байланысты шектеулі қолданыс 
тапты. Атап айтқанда, бұл модель шеңберінде болжанған энергетикалық деңгейлер мен 
электромагниттік ауысу сипаттамалары нақты өлшеулермен толық сәйкес келмегендіктен, 
теориялық әдістемені жетілдіру қажеттілігі туындады. Осы орайда SU(6) симметриясына 
негізделген және жоғары ретті өзара әрекеттесулерді қамтитын кеңейтілген формализм 
ұсынылды. 

Бұл жаңа симметриялық тұжырымдама негізінде жүргізілген есептеулер көрсеткендей, 
төменгі энергия аймағында модель ядроның негізгі күйлерін сипаттауда айтарлықтай 
сенімділікке ие. Электромагниттік ауысулардың ықтималдығы мен энергетикалық деңгейлер 
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о 

(𝜆𝜆, 𝜇𝜇), 𝛼𝛼22 𝐼𝐼𝑖𝑖 → 𝐼𝐼𝑓𝑓 2+ → 0+ 4+ → 2+ +6 → 4+ 8+ → 6+ 10+ → 8+ 
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 параметрі таңдалғанда, теориялық және тәжірибелік мәндердің сәйкес 
келу дәлдігі бұдан да жоғары болар еді. Алайда, біз есептеулерде сенімділігі жоғары 
эксперименттік мәнімен ерекшеленетін нақты бір ауысуды бастапқы параметр ретінде 
алдық. Айта кету керек, басқа ротациялық күйлер арасындағы көптеген E2 ауысуларына 
қатысты тәжірибелік деректер әзірге жеткіліксіз күйде қалып отыр.

2-кесте. 234,236,238U ядроларындағы Вайскопф бірлігінде берілген 
Е2-ауысуларының B(E2,Ii→If) эксперименттік және теориялық мәндері

Ядро

Егер ауысулар бойынша орташа ықтимал мәндерге сәйкес келетін тиімді заряд 21+ → 01+ 
параметрі таңдалғанда, теориялық және тәжірибелік мәндердің сәйкес келу дәлдігі бұдан да 
жоғары болар еді. Алайда, біз есептеулерде сенімділігі жоғары эксперименттік мәнімен 
ерекшеленетін нақты бір ауысуды бастапқы параметр ретінде алдық. Айта кету керек, басқа 
ротациялық күйлер арасындағы көптеген E2 ауысуларына қатысты тәжірибелік деректер 
әзірге жеткіліксіз күйде қалып отыр. 
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Е𝟐𝟐 −ауысуларының 𝐵𝐵(𝐸𝐸2, 𝐼𝐼𝑖𝑖 → 𝐼𝐼𝑓𝑓) эксперименттік және теориялық мәндері. 

 
Негізгі күйлердің энергиясы мен электромагниттік сәуле шығару интенсивтілігін 

сипаттауда тек s- және d-бозондармен шектелу жеткіліксіз екенін атап өту қажет. Себебі, 
тәжірибелік деректер ауыр ядролардың, соның ішінде актинойдтар тобына жататын 
ядролардың энергетикалық спектрінде теріс паритетті деңгейлердің бар екенін растайды. Бұл 
деңгейлер, әдетте, негізгі ротациялық жолақтың жанында орналасып, онымен ұқсас спиндік 
құрылымға ие болады. Мұндай деңгейлердің болуын есепке алу үшін, кемінде ppp- және f-
типті бозондардың үлесін қарастыру қажет, әсіресе теріс жұптылықтағы ауысуларды 
сипаттау барысында олардың әсері елеулі болуы мүмкін. 

Жоғарыда аталған қосымша бозондарды енгізу арқылы ядро құрылымын неғұрлым нақты 
сипаттауға мүмкіндік туады. Бұл тұрғыда халықаралық ғылыми әдебиетте жүргізілген 
көптеген теориялық жұмыстарды атап өтуге болады. 

Соған қарамастан, тек s- және d-бозондарымен шектелген қарапайымдылығы жоғары 
моделіміздің өзі Уранның үш ауыр изотопының төменгі энергетикалық күйлерін сипаттауда 
айтарлықтай нәтижелі үлгілерді қамтамасыз етуде. Бұл теориялық жақындаудың тиімділігі 
есептеулер мен тәжірибелік нәтижелер арасындағы үйлесімділік арқылы дәлелденіп отыр. 

 
Қорытынды 

 
Сфералық симметриялы ядролардың ішкі құрылымын сипаттауға бағытталған ЭӨБМ 

(Эффективті Өрістік Байланыс Моделі) бастапқы кезеңінде теориялық және эксперименттік 
деректердің арасында кейбір алшақтықтардың орын алуына байланысты шектеулі қолданыс 
тапты. Атап айтқанда, бұл модель шеңберінде болжанған энергетикалық деңгейлер мен 
электромагниттік ауысу сипаттамалары нақты өлшеулермен толық сәйкес келмегендіктен, 
теориялық әдістемені жетілдіру қажеттілігі туындады. Осы орайда SU(6) симметриясына 
негізделген және жоғары ретті өзара әрекеттесулерді қамтитын кеңейтілген формализм 
ұсынылды. 

Бұл жаңа симметриялық тұжырымдама негізінде жүргізілген есептеулер көрсеткендей, 
төменгі энергия аймағында модель ядроның негізгі күйлерін сипаттауда айтарлықтай 
сенімділікке ие. Электромагниттік ауысулардың ықтималдығы мен энергетикалық деңгейлер 
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Ii→If 2+→0+ 4+→2+ +6→4+ 8+→6+ 10+→8+
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біртіндеп төмендеу динамикасын көрсетеді. Бұл бақыланған корреляциялар ядроішілік өзара 
әрекеттесулердің массалық санға тәуелділігі туралы маңызды ақпарат береді. 

Алынған оптималды параметрлер негізінде құрастырылған ядролық изотоптардың қозған 
күйлерінің энергетикалық спектрлері 2 - суретте визуалды түрде ұсынылған. Теориялық 
есептеулер нәтижесінде алынған энергетикалық деңгейлердің орналасуы эксперименттік 
мәліметтермен жоғары дәрежеде үйлесімділік танытады. Дегенмен, қозған күйлердің 
спиндік мәндерінің өсуімен бірге теориялық және эксперименттік энергия шамалары 
арасындағы аздаған алшақтық байқалады. Бұл айырмашылық жоғары спиндік күйлердің 
құрылымын сипаттауда теориялық модельдің шектеулігін немесе қосымша әсерлердің 
маңыздылығын көрсетуі мүмкін. Тәжірибелік зерттеулерде β және γ жолақтарына тиесілі 
жоғары энергетикалық деңгейлер туралы мәліметтердің шектеулі болуы осы жолақтардың 
құрылымын толыққанды талдауды қиындатады. 

Анықталған энергетикалық деңгейлердің толқындық функцияларын есептеу 
принципиалды қиындық тудырмайды және бұл функциялар ядроішілік құрылым туралы 
терең түсінік алуға мүмкіндік береді. Есептелген толқындық функцияларды пайдалана 
отырып, әртүрлі қозған күйлер арасындағы кванттық ауысулар нәтижесінде пайда болатын 
электромагниттік сәулеленудің интенсивтіліктерін болжауға болады. 

Қарастырылып отырған теориялық формализмді ядролардағы электромагниттік ауысу 
процестеріне қолданудың ғылыми маңызы зор. Электромагниттік сәулеленудің 
интенсивтіліктерін дәл болжау арқылы теориялық модельде анықталған күйлердің 
толқындық функцияларының ақиқаттығын және оның қолданылу аясын эмпирикалық 
тұрғыдан тексеруге мүмкіндік туады. Бұл, өз кезегінде, ядролық құрылымның теориялық 
сипаттамасының сенімділігін арттырады U(6) - тобы генераторлары арқылы 

𝑇𝑇(𝐸𝐸2)
 

операторын 
 

𝑇𝑇𝜇𝜇(𝐸𝐸2) = 𝑞𝑞1(в00+ в2𝜇𝜇 + (−)𝜇𝜇в2−𝜇𝜇+ в00) + 𝑞𝑞1[в2𝜇𝜇1+ в2𝜇𝜇1]𝜇𝜇(2) = 𝛼𝛼2𝑄𝑄𝜇𝜇  (2.1) 
 

Мұндағы 𝑄𝑄𝜇𝜇 − ядроның квадрупольдік операторы, 𝛼𝛼2 − эффективтік 𝐸𝐸2 − заряды.  
Алынған өрнек бойынша (2𝑁𝑁, 0) болуы үшін келтірілген матрицалық элемент 𝐵𝐵(𝐸𝐸2, 𝐼𝐼 →

𝐼𝐼 − 2) мәні: 
 

𝐵𝐵(𝐸𝐸2, 𝐼𝐼 → 𝐼𝐼 − 2) = 𝛼𝛼22 ∙
3
4 ∙

𝐼𝐼(𝐼𝐼+1)
(2𝐼𝐼+1)(2𝐼𝐼−1) ∙ (2𝑁𝑁 − 𝐼𝐼 + 2)(2𝑁𝑁 + 𝐼𝐼 + 1)  (2.2) 

 
түрінде жазамыз.. 
Атом ядроларындағы электрлік квадрупольдік ауысуларды сипаттау мақсатында, біз 

A=234,236,238A болатын уран изотоптарына қатысты B(E2) ықтималдық шамаларын есептік 
тұрғыда бағаладық. Бұл есептеулер алдыңғы тарауда қарастырылған теориялық модельдің 
негізінде жүргізілді. Алынған нәтижелер сәйкесінше қолда бар спектроскопиялық 
тәжірибелік деректермен салыстырылып, олардың арасындағы үйлесімділік деңгейі мұқият 
талданды. Жүргізілген салыстыру нәтижесінде, әсіресе негізгі ротациялық жолақтың төменгі 
спиндік күйлері арасындағы E2 ауысулары үшін есептік және өлшенген шамалар арасында 
жақсы сәйкестік байқалды. 

Аталған уран изотоптарының (234,236,238U) негізгі жолақ құрылымындағы ауысулардың 
ықтималдық шамалары 2-кестеде Вайскопф бірлігінде келтірілген. Есептеулерде тек бір 
еркін параметр пайдаланылды, ол нақты бір эксперименттік E2 ауысу мәнімен сәйкестендіру 
арқылы анықталды. Бұл параметрді таңдау есептік модельдің сенімділігін арттырды. 

Алынған B(E2) шамаларының энергетикалық күйге тәуелділігі төменнен жоғарыға қарай 
бастапқыда өсуімен, кейін белгілі бір максимумнан соң бәсеңдеуімен сипатталады. Мұндай 
бейсызық тәуелділік бөлшектер санының шектеулі болуымен немесе модельдік шектермен 
байланысты болуы ықтимал. 
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Негізгі күйлердің энергиясы мен электромагниттік сәуле шығару интенсивтілігін 
сипаттауда тек s- және d-бозондармен шектелу жеткіліксіз екенін атап өту қажет. Себебі, 
тәжірибелік деректер ауыр ядролардың, соның ішінде актинойдтар тобына жататын 
ядролардың энергетикалық спектрінде теріс паритетті деңгейлердің бар екенін 
растайды. Бұл деңгейлер, әдетте, негізгі ротациялық жолақтың жанында орналасып, 
онымен ұқсас спиндік құрылымға ие болады. Мұндай деңгейлердің болуын есепке 
алу үшін, кемінде ppp- және f-типті бозондардың үлесін қарастыру қажет, әсіресе теріс 
жұптылықтағы ауысуларды сипаттау барысында олардың әсері елеулі болуы мүмкін.

Жоғарыда аталған қосымша бозондарды енгізу арқылы ядро құрылымын неғұрлым 
нақты сипаттауға мүмкіндік туады. Бұл тұрғыда халықаралық ғылыми әдебиетте 
жүргізілген көптеген теориялық жұмыстарды атап өтуге болады.

Соған қарамастан, тек s- және d-бозондарымен шектелген қарапайымдылығы жоға-
ры моделіміздің өзі Уранның үш ауыр изотопының төменгі энергетикалық күйлерін 
сипаттауда айтарлықтай нәтижелі үлгілерді қамтамасыз етуде. Бұл теориялық жақын-
даудың тиімділігі есептеулер мен тәжірибелік нәтижелер арасындағы үйлесімділік 
арқылы дәлелденіп отыр.

Қорытынды

Сфералық симметриялы ядролардың ішкі құрылымын сипаттауға бағытталған ЭӨБМ 
(Эффективті Өрістік Байланыс Моделі) бастапқы кезеңінде теориялық және экспери-
менттік деректердің арасында кейбір алшақтықтардың орын алуына байланысты 
шектеулі қолданыс тапты. Атап айтқанда, бұл модель шеңберінде болжанған энер-
гетикалық деңгейлер мен электромагниттік ауысу сипаттамалары нақты өлшеулермен 
толық сәйкес келмегендіктен, теориялық әдістемені жетілдіру қажеттілігі туындады. 
Осы орайда SU(6) симметриясына негізделген және жоғары ретті өзара әрекеттесулерді 
қамтитын кеңейтілген формализм ұсынылды.

Бұл жаңа симметриялық тұжырымдама негізінде жүргізілген есептеулер көрсеткендей, 
төменгі энергия аймағында модель ядроның негізгі күйлерін сипаттауда айтарлықтай 
сенімділікке ие. Электромагниттік ауысулардың ықтималдығы мен энергетикалық 
деңгейлер бойынша алынған нәтижелер тәжірибелік деректермен жақсы үйлесім 
табады, бұл модельдің төмен энергиялы құрылымдық ерекшеліктерді сәтті сипаттай 
алатынын дәлелдейді.

Алайда, қозған күйлердің энергиясы артқан сайын теориялық және эксперименттік 
нәтижелер арасында байқалатын сәйкессіздік күшейе түседі. Кейбір жағдайларда бұл 
айырмашылық 15-20% аралығында болуы мүмкін. Мұндай ауытқулар модельдің тек 
ss- және dd-бозондарға сүйенуіне байланысты туындайды. Энергиясы жоғары күйлерде 
gg-бозондар секілді жоғары бұрыштық моментке ие бозондардың ықпалы елеулі болуы 
ықтимал. Сонымен қатар, негізгі жолаққа жақын орналасқан, спиндік кванттық сандары 
ұқсас қосымша энергетикалық жолақтардың байқалуы pp-бозондардың үлесінің артып 
отырғанын айғақтайды. Бұл – актинойд тектес ядроларды нақты модельдеу үшін 
кем дегенде ss, pp, және dd-бозондарды бірге ескерудің қажеттілігін туындатады. Бұл 
бағытта әлемдік ғылыми қауымдастықта бірқатар зерттеулер жүргізілгені белгілі.
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Жалпы алғанда, біздің зерттеуіміз нәтижесінде алынған деректер көрсетіп отырғандай, 
ss- және dd-бозондарға негізделген қарапайым модельдің өзі Уран элементінің A=234, 
236, 238 изотоптарының төменгі энергетикалық құрылымын қанағаттанарлық 
дәлдікпен сипаттай алады. Алайда, энергетикалық спектрдің жоғары бөліктерін және 
күрделірек жолақ құрылымдарын есепке алу үшін модельді кеңейтіп, қосымша бозон 
түрлерін ендіру аса маңызды міндет болып табылады.
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Interacting boson modeling in the nuclear structure of deformed uranium isotopes

Abstract. One of the most pressing and complex issues in nuclear physics is the absence of a universal 
and comprehensive theory that fully describes the interaction processes between nucleons. These 
interactions exhibit a high degree of complexity and require consideration of the internal structural 
parameters of nuclear systems, including potential fields and the averaged motion laws of nucleons. 
Nuclear states at low energy levels are typically analyzed within the framework of specific model 
concepts. In such models, nucleons are assumed to move within an average potential field, and their 
mutual interactions are generally limited to two-body forces. A comparable analogy can be drawn with 
the motion of electrons within an atom, although the nature of nuclear forces is fundamentally different 
–  they are significantly stronger and operate at very short distances.
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A particularly significant aspect of nuclear structure research is the study of collective motions, i.e., 
coordinated oscillations or rotations involving groups of nucleons. These movements directly affect key 
spectral parameters that define the internal structure of the nucleus. From a theoretical perspective, 
these phenomena were first extensively studied by O. Bohr and B. Mottelson. Within the framework 
of models describing the geometric shape of the nucleus, they provided a detailed interpretation of 
the physical nature of collective motion and linked it to deformation characteristics. Specifically, it was 
demonstrated that low-energy excitations are closely associated with the quadrupole deformation 
parameter.

In this scientific study, we employ a theoretical approach based on the interacting boson model (IBM) 
incorporating SU(5) symmetry. This study aims to quantitatively describe the structure of three different 
uranium isotopes in a spheroidal shape. In this context, we calculate the B(E2) transition probability 
parameter, which characterizes nuclear energy levels and electromagnetic radiation probabilities, 
and compare the theoretical results with existing experimental data. The outcomes of this research 
contribute to assessing the accuracy of nuclear models and improving the effectiveness of nuclear 
structure characterization.

Keywords: atomic nucleus, spectra, gamma transitions
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Моделирование взаимодействующих бозонов в ядерной структуре деформированных 
изотопов урана

Аннотация. Одной из наиболее актуальных и сложных проблем в ядерной физике остается 
отсутствие универсальной и всеобъемлющей теории, способной полноценно описать процессы 
взаимодействия между нуклонами. Эти взаимодействия обладают высокой степенью сложности 
и требуют учета внутренних структурных параметров ядерных систем, включая потенциальные 
поля и усреднённые законы движения нуклонов. Состояния ядер при низких энергетических 
уровнях, как правило, рассматриваются в рамках определённых модельных концепций. В таких 
моделях предполагается, что нуклоны движутся в среднем потенциальном поле, а их взаимное 
влияние ограничено двухчастичными силами. Подобную аналогию можно провести с движением 
электронов в атоме, хотя природа ядерных сил принципиально иная – они гораздо сильнее и 
действуют на крайне малых расстояниях.

Особо значимым аспектом исследования ядерной структуры является изучение коллективных 
движений, то есть согласованных колебаний или вращений, происходящих с участием 
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групп нуклонов. Эти движения напрямую влияют на ключевые спектральные параметры, 
характеризующие внутреннюю структуру ядра. С теоретической точки зрения эти явления 
впервые были глубоко изучены О. Бором и Б. Моттельсоном. В рамках моделей, описывающих 
геометрическую форму ядра, они предложили интерпретацию физической природы 
коллективных движений, связав их с деформационными характеристиками. В частности, было 
показано, что возбуждения на низких энергетических уровнях тесно связаны с квадрупольным 
параметром деформации.

В данной научной работе используется теоретический подход, основанный на модели 
взаимодействующих бозонов (IBM), включающей SU (5)-симметрию. Цель исследования – 
количественно описать структуру трех различных изотопов элемента урана сфероидной формы. 
В этом контексте производится расчет переходной вероятности B(E2), характеризующей 
энергетические уровни ядра и вероятность электромагнитного излучения с последующим 
сравнением теоретических данных с имеющимися экспериментальными результатами. 
Полученные выводы способствуют оценке точности ядерных моделей и повышению 
эффективности описания ядерной структуры.

Ключевые слова: атомное ядро; спектры; гамма-переходы.
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