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Abstract: The angular distributions (ADs) for 20Ne elastically scattered from a 
24Mg target were measured experimentally many years ago at Elab = 50–100 MeV. 
Unfortunately, these data received little attention and were analyzed only from 
a phenomenological perspective at that time. This work is essentially devoted 
to investigating these data from a microscopic point of view, with a special 
interest given to the probable α + 16O cluster structure of the 20Ne nucleus.The 
considered data are fairly well reproduced by the implemented potentials. The 
study demonstrated the success of the proposed α + 16O cluster model of the 
20Ne nucleus in reproducing the considered 20Ne + 24Mg ADs over a wide range 
of energies.
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Introduction

The traditional view of the nucleus is that it has a uniform distribution of neutrons and 
protons. However, from the early days of nuclear research, it has been recognized that 
nucleon clusters, or nuclear clustering, might be crucial for a deeper understanding of nuclear 
interactions and structure. In the 1950s, Morinaga [1] made a bold prediction that alpha 
particles could align linearly. He suggested that cluster structures would not be present in the 
ground state of a nucleus but would emerge as the internal energy of the nucleus increased. 
Thus, a nucleus needs a certain amount of energy to develop a cluster structure, with these 
structures becoming evident near or just below the cluster decay threshold energy. Ikeda 
et al. [2] expected that the cluster structure would become most pronounced at excitation 
energy (Ex) corresponding to specific decay thresholds.

Experimental evidence supporting the concept of clusterization in light nuclei is detailed in 
M. Freer’s work [3]. A clear example is the two alpha-particle system in 8Be, where the strong 
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alpha-particle binding energy (~28 MeV) implies that 6Li and 7Li nuclei are likely to form α + 
dand α + t cluster structures, respectively. The Hoyle state in 12C, observed at Ex = 7.65 MeV, is 
an exemplary cluster state. Hoyle [4] had predicted this state to explain the cosmic abundance 
of carbon, and Cook [5] detected it at an energy very close to Hoyle’s prediction.

The 20Ne + 24Mg system is particularly intriguing and could provide valuable insights for 
extracting spectroscopic factors for the 20Ne → 16O + α and 24Mg → 20Ne + αconfigurations. 
However, only a few studies [6, 7] have investigated this system, and these studies used 
predominantly phenomenological approaches. In Ref. [6], angular distributions (ADs) for the 
24Mg (20Ne, 20Ne) 24Mg at Elab = 50-100 MeV were measured in the angular range 10o <θc.m.< 
75o. These data were described using optical model potentials (OMPs). Reduced absorption 
and α-cluster transfer were discussed theoretically but not observed experimentally at this 
energy range. Volume integrals and total reaction cross-sections for the potentials were also 
determined. Ref. [7] involved measurements of ADs for a 20Ne ion beam at 40 MeV elastically 
scattered from a 24Mg target. The measured ADs exhibited oscillations associated with the 
24Mg (20Ne, 24Mg)20Ne reaction. An α-spectroscopic factor (SF) of 0.08 ± 0.02 was derived from 
the analysis, considering the coherent sum of scattering amplitudes from elastic scattering 
and α-transfer.

In a previous study [8], the 20Ne + 24Mg ADs were analyzed using the São Paulo potential 
(SPP2) and a cluster folding potential (CFP). The latter was generated based on available 
phenomenological OMPs for the α + 24Mg and 16O + 24Mg channels. In the current study, the 
20Ne + 24Mg ADs are reanalyzed using a microscopic CFP and the Brazilian Nuclear Potential 
(BNP), which is independent of both projectile energy and relative velocity. The CFP used in 
this study was generated from microscopic α + 24Mg and 16O + 24Mg potentials, rather than the 
phenomenological ones used in Ref. [8].

Overall, the concept of clusterization offers a valuable framework for understanding 
complex nuclear systems and enhances our knowledge of nuclear physics. This work focuses 
on exploring the probable α + 16O structure model of 20Ne nucleus and its ability to reproduce 
the 20Ne + 24Mg ADs across a broad energy range within this model. The manuscript is 
organized as follows: Section II presents the potentials used, Section III covers the analyses 
and discussion of the results, and Section IV provides a summary and conclusions.

Implemented theoretical methods

The available experimental ADs data for20Ne+24Mg system at Elab= 50, 60, 80, 90, and 100 
MeV [6] are initially reanalyzed using the BNP, which incorporates the density distributions of 
the interacting nuclei. Then, the full microscopic cluster folding potential (CFP) is employed 
to evaluate the accuracy of reproducing the 20Ne + 24Mg data using the α + 16O model for 20Ne, 
a model that has previously demonstrated significant success in describing various nuclear 
systems induced by 20Ne [8-10].
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BNP

To eliminate parameter ambiguities associated with OMP calculations, the more microscopic 
Brazilian Nuclear potential (BNP)was employed to generate the real part of the potential. This 
was done by folding the projectile (ρp) and target (ρt) density distributions, obtained from the 
Dirac-Hartree-Bogoliubov model [11], with an effective potential. Recently, L.C. Chamon et al. 
[12] suggested two models for the nuclear potential between interacting nuclei: theSão Paulo 
potential (SPP2), which depends on the relative velocity of the nuclei, and the BNP, which is 
independent of both projectile energy and relative velocity. The effective nucleon-nucleon 
(NN) interactions for the SPP2 and BNP aregiven by the following formulas:

                                                                                                                                                              (1)

with Uo=735.813 MeV, a=0.5 fm, v representing the relative velocity between the interacting 
nuclei, andc being the speed of light. 

        (2)
      
with Uo=87.226MeV and a=0.95 fm.
Data optimization was performed by minimizing the χ2 value, which quantifies the 

discrepancy between the data and the theoretical results. The calculations and parameter 
optimization were carried out using the FRESCO and SFRESCO code [13]. It is worth noting 
that in a previous study [8], these ADs data for the 20Ne + 24Mg system were analyzed within 
the SPP2 potential. Therefore, it is of interest to compare the SPP2 and BNP potentials in 
reproducing the considered data.

CFP

The study advances by aiming to match the experimental data for the elastic scattering 
of 20Ne + 24Mg ADs using a cluster folding model (CFM). This approach is inspired by the 
α + 16O cluster structure in the ground state of the 20Ne. In the CFM framework, both the 
real and imaginary components of the potential are developed using the cluster folding 
technique. To conduct the calculations for the 20Ne + 24Mg system, it is essential to establish 
the potentials for the α + 24Mg and 16O + 24Mg channelsas well as the binding potential for the
α + 16O configuration in the 20Ne nucleus. The real and imaginary components of the 

20Ne + 24Mg potential are derived from these α + 24Mg and 16O + 24Mg potentials as follows:
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where  Mg 24−
V  ,  Mg  O 2416 −

V ,  Mg 24−
W , and   Mg  O 2416 −

W are the potentials for α+24Mg and 16O+24Mg 

channels, which reproduce the experimental data at Eα  ≈ 1/5 ENe and E16O≈ 4/5 ENeprepared within 
the BNP using standard normalizations of1.0 and 0.78 for the real and imaginary potential parts, 
respectively. The term )(χ 0 r is the intercluster wave function for the relative motion of α and 16O in 
the ground state of 20Ne, and r  is the relative coordinate between the centers of mass of α and 16O. 
The bound state form factor α + 16O represents a 5S state, is taken from Ref. [14]. The real and 
imaginary components of the cluster folding potential used in the current work are illustrated in Fig. 
1.  
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The agreement between the data and theoretical calculations is generally good across the entire 
angular range, as shown in Fig. 2, using the potential parameters listed in Table I. The data is well 
fitted using an average extracted NR and NI values are 0.74±0.14 and 0.75±0.1, respectively, which 
are close to the previously extracted values 0.87±0.18 and 0.75±0.1 from previous analysis [8] 
within SPP2. The experimental angular distribution reveals a Coulomb-nuclear interference peak, 
which shifts toward smaller scattering angles as the bombarding energy increases. 
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The agreement between the data and theoretical calculations is generally good across the 
entire angular range, as shown in Fig. 2, using the potential parameters listed in Table I. The 
data is well fitted using an average extracted NR and NI values are 0.74±0.14 and 0.75±0.1, 
respectively, which are close to the previously extracted values 0.87±0.18 and 0.75±0.1 from 
previous analysis [8] within SPP2. The experimental angular distribution reveals a Coulomb-
nuclear interference peak, which shifts toward smaller scattering angles as the bombarding 
energy increases.
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Fig. 3: Comparison between 20Ne+24Mg ADs and calculations within CFP at Elab= 50-100 MeV

Table I: Optimal potential parameters for 20Ne + 24Mg system at different energies extracted from 
the analyses within BNP and CFP

Elab
(MeV)

Model NR NI χ2/N

50 BNP 0.57 0.60 0.11
CFP 0.79 1.26 0.08

60 BNP 0.69 0.74 0.19
CFP 0.97 1.28 0.20

80 BNP 0.81 0.86 5.95
CFP 0.79 0.64 4.85

90 BNP 0.67 0.83 0.18
CFP 0.77 0.66 1.42

100 BNP 0.94 0.703 4.31
CFP 0.75 0.45 4.30

Summary

In summary, the angular distributions for elastic scattering of stable 20Ne a24Mg target at 
energies ranging from 50 to 100 MeV show a classical Fresnel diffraction scattering pattern, 
asdepicted in Figs. 2 and 3. However, a distinct deviation from this pattern is observed in 
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4. SUMMARY 
 

In summary, the angular distributions for elastic scattering of stable 20Ne a24Mg target at 
energies ranging from 50 to 100 MeV show a classical Fresnel diffraction scattering 
pattern,asdepicted in Figs. 2 and 3. However, a distinct deviation from this pattern is observed in the 
case of elastic scattering involving weakly-bound nuclei, such as 11Be one-neutron halo nucleus 
[15], when interacting with different targets like 64Zn [16], 120Sn [17], 197Au [18], and 209Bi [19]. 
These interactions exhibit significant suppression of the Fresnel peak due to the break-up effects. 
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the case of elastic scattering involving weakly-bound nuclei, such as 11Be one-neutron halo 
nucleus [15], when interacting with different targets like 64Zn [16], 120Sn [17], 197Au [18], and 
209Bi [19]. These interactions exhibit significant suppression of the Fresnel peak due to the 
break-up effects. Theoretical calculations within CFM, which is based on the α + 16O cluster 
structure for 20Ne, successfully reproduce the considered data,providingevidence supporting 
this proposed structural model for the 20Ne nucleus.
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Повторный анализ угловых распределений упругого рассеяния 20Ne + 24Mg 
 в различных потенциалах взаимодействия

Аннотация. Угловые распределения (УР) для упруго рассеянного 20Ne от мишени 24Mg 
были измерены экспериментально много лет назад при Elab = 50–100 МэВ. К сожалению, эти 
данные получили мало внимания и были проанализированы только с феноменологической 
точки зрения в то время. Эта работа в основном посвящена исследованию этих данных с 
микроскопической точки зрения, при этом особый интерес уделяется вероятной кластерной 
структуре α + 16O ядра 20Ne. Рассмотренные данные достаточно хорошо воспроизводятся 
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реализованными потенциалами. Исследование продемонстрировало успешность предложен-
ной кластерной модели α + 16O ядра 20Ne в воспроизведении рассматриваемых AD20Ne + 24Mg в 
широком диапазоне энергий.

Ключевые  слова: распределение плотности, упругое рассеяние, оптический потенциал, 
кластерное соединение, Бразильский ядерный потенциал.

Номер(а) PACS: «21.10.Jx, 21.60.Cs, 24.10.Eq, 25.70.Hi»

Ш. Хамада
Жаратылыстану факультеті, Танта университеті, Танта, Египет

(E-mail: sh.m.hamada@science.tanta.edu.eg)

Әртүрлі өзара әрекеттесу потенциалдарында 20Ne +24Mg серпімді шашыраудың 
бұрыштық үлестірімдерін қайта талдау

Аңдатпа. 24Mg  нысанасынан серпімді шашыраңқы 20Ne үшін бұрыштық үлестірулер (у) 
көптеген жылдар бұрын Elab = 50-100 МэВ кезінде эксперименталды түрде өлшенді. Өкінішке 
орай, бұл мәліметтерге назар азаударылды және сол кезде тек феноменологиялық тұрғыдан 
талданды. Бұл жұмыс негізінен осы деректерді микроскопиялық тұрғыдан зерттеуге 
бағытталған, 20NE ядросының α + 16O кластерлік құрылымына ерекше қызығушылық 
танытады. Қарастырылған деректер іске асырылған әлеуеттермен жақсы ойнатылады. 
Зерттеу ұсынылған α + 16O 20NE ядросының кластерлік моделінің қарастырылып отырған ad 
20NE + 24MG-ді кең энергия диапазонында ойнаудағы сәттілігін көрсетті.

Түйін сөздер: тығыздықтың таралуы, серпімді шашырау, оптикалық потенциал, кластерлік 
байланыс, бразилиялық ядролық потенциал

Information about authors:

Sh. Hamada – corresponding author, Faculty of Science, Tanta University, Tanta, Egypt

Сведения об авторах:

Ш. Хамада – автор для корреспонденции, Факультет естественных наук, Университет Танта, 
Танта, Египет.

Авторлар туралы мәліметтер:

Ш. Хамада – корреспондент автор, Жаратылыстану ғылымдары факультеті, Танта 
университеті, Танта, Египет

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY NC) license (https://creativecommons.
org/licenses/by-nc/4.0/).


