К. Шварц¹, А. Даулетбекова², М. Сорокин³

 1 Центр по изучению тяжёлых и
онов им. Гельмгольца, Дармштат, Германия

2 Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан

 3 Национальный исследовательский центр «Курчатовский институт», Москва, Россия

Мир коротких импульсов

1. Понятие времени: от каменного века до сегодняшнего дня

Миллионы лет первобытный человек определял время по движению Солнца и Луны, а эталоном времени была длина дня и ночи. Количественная концепция интервала времени - секунда, минута, час и т. д. появилась благодаря Галилео Галилею (1564 - 1642), который начал количественные измерения времени маятником. Первые оптимизированные маятниковые часы нидерландского физика Кристиана Гюйгенса (*Christiaan Huygens*, 1629 - 1695) достигли стабильности $\Delta t \pm 10$ секунд в течение дня. Английский инженер Уильям Шорт (*William Hamilton Short*, 1881 - 1971) с точными маятниковыми часами в 1921 году достиг $\Delta t \pm 0.003$ с, а американский физик Варен Марисон (*Warren Alvin Marrison*, 1896 - 1980) в 1927 году в первых кварцевых часах добился уже $\pm 10^{-9}$ секунд. С 70-х годов прошлого века кварцевые часы стали доступными для всех. Американский физик Харольд Лайонс (*Harold Lyons*, 1913 - 1998) в 1949 году открыл эпоху атомных часов со стабильностью времени $\Delta t \pm 10^{-11}$ секунд.

Процессы в человеческом теле являются относительно медленными. Работа сердца соответствует частоте 60-70 ударов в секунду, а электромагнитные колебания человеческого мозга находятся в диапазоне от одного до десятков герц. В транспортных средствах со скоростями от нескольких десятков до тысячи километров в час сотая доля секунды уже существенна (при скорости 200 км/час 0.01 секунды соответствует 0.5 метра). Спутниковая навигационная связь для определения координат и расстояний требует точность Δt , на уровнеодной наносекунды и меньше (1нs = 0.001 мкс = 10⁻⁹ с).

Другая картина - это атомный и молекулярный мир, где многие процессы происходят значительно быстрее, и не все из них мы сегодня можем измерить. Электроны проводимости в металлах перемещаются со скоростью, близкой к скорости света (около 300 тысяч километров в секунду). Возбуждение атомов и молекул происходит за фемтосекунды и быстрее (1 $\phi c = 10^{-15} c$). Описать такие процессы (координаты, скорость, энергию, время жизни и другие свойства частиц) можно только в рамках законов квантовой физики. Мир атомов и молекул имеет статистический характер, который проявляется во всех экспериментах. Возможность измерения физических величин в микромире подчиняется принципу неопределенности, сформулированному в 1927 году немецким физиком Вернером Гейзенбергом (Werner Karl Heisenberg, 1901-1976, Нобелевская премия в 1932 году). Принцип неопределенности утверждает, что в квантовых системах невозможно одновременно точно определить координаты (x, y, z) и скорость (v $_x$, v $_y$, v $_z$) или энергию (E) и время жизни (τ) квантового состояния. Для энергии квантовой системы и времени жизни принцип неопределенности Гейзенберга приводит к формуле: $\Delta E \times \Delta t \geq h/4 \pi = 3.29 \times 10^{-16}$ эВ×с. Это связывает точность определения энергии ΔE с величиной Δt или τ .В эту формулу входит универсальная постоянная $h = 4.1567 \times 10^{-15}$ эВ × с. Эту константу в 1900 году вел в физику немецкий физик Макс Планк (Max Planck, 1858 -1947, Нобелевская премия в 1918 году), и она названа именем открывателя. Величина h является отношением энергии (ε) световых квантов или фотонов к частоте (ν): h = ε / ν . Планк в конце 19-го века работал над теорией теплового излучения и пришел к формуле, которая объяснила законы теплового излучения. Но эта формула предполагала, что излучение световой энергии происходит в дискретных порциях - квантах света с энергией $\varepsilon = h \nu$. Макс Планк был первым человеком, который предсказал и описал световые кванты (фотоны) в тепловом излучении нагретых тел и этим открыл квантовую эру в физике [1].

eISSN 2663-1296 Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Физика. Астрономия сериясы, 2022, Том 138, №1 Вестник ЕНУ им. Л.Н. Гумилева. Физика. Астрономия, 2022, Том 138, №1

Принцип неопределенности Гейзенберга связан со всеми объектами квантовой физики - атомами, молекулами, ядрами атомов и элементарными частицами. Этот принцип предсказывает, что большая энергия возбуждения системы соответствует короткому времени жизни возбужденного состояния. Следует отметить, что принцип неопределенности описывает совокупность частиц и предоставляет статистическую информацию. В качестве примера рассмотрим распад радиоактивных ядер. Радиоактивный углерод ¹⁴ С распадается в азот ¹⁴ N и излучает электрон (β -лучи) с энергией Е $_{\beta} = 156$ кэВ. Нашим наблюдениям доступны точные данные о времени полураспада ¹⁴ С (5730 лет) – это время, за которую распадаются половина всех атомов. Но мы не знаем, когда распадается отдельный атом. Тем не менее принцип неопределенности Гейзенберга дает возможность оценить среднее время процесса распада с излучением: $\Delta t \approx 2.65 \times 10^{-20}$ секунд!

Квантовые переходы в атомах и молекулах в видимой области спектра (λ от 400 до 800 нм, т.е. от 3 до 1.5 эВ) происходят за фемтосекунды, что сравнимо с импульсными лазерами (Рис.1). Согласно принципу неопределенности, квантовые переходы с небольшой полушириной $\Delta \nu$ имеют большую величину Δt . При более высоких энергиях (рентгеновские и γ - лучи) время жизни уменьшается.

Рисунок 1 – а - Автокоррелятор для измерения длительности лазерного импульса: 1 - импульс от лазера; 2 - профиль импульсов; 3,4 - отраженные лучи; 5 - пучок от нелинейного кристалла (NC); 6 - интенсивность преобразованного света NC; BS – светоделитель (англ.*beamsplitter*); М1 - зеркало; М2 - подвижное зеркало для измерения времени; NC – нелинейный кристалл (преобразователь света от лазера); F - оптический фильтр для света NC; D - детектор. б - характеристика квантового перехода E 2 - E 1 = h ν_0 ; ν_0 - резонансная частота; f_{max} – максимальная величина (интенсивность, оптическая плотность); $\Delta \nu$ - полуширина.

Импульсная лазерная спектроскопия использует схему с двумя последовательными импульсами: первый - сильный (англ. pump pulse) возбуждает атомы или молекулы, а второй импульс (англ. probe pulse) фиксирует изменения в объекте. (Рис. 2). Импульсные лазеры сегодня дают возможность экспериментировать в фемтосекундном диапазоне. А за последние годы физика открывала дорогу в атто - (1 ас = 10^{-18} с) изептосекундную (1 зс = 10^{-21} с) спектроскопию. Для таких экспериментов используются лазеры на свободных электронах (англ. Free Electron Laser, FEL), которые доступны только на электронных ускорителях.

Рисунок 2 – Схема импульсной лазерной спектроскопии: образец возбуждается сильным лазерным импульсом и после Δt_i измеряется более слабым.

eISSN 2663-1296 Bulletin of L.N. Gumilyov ENU. PHYSICS. ASTRONOMY Series, 2022, Vol. 138, №1

2. Лазеры на свободных электронах

Новые возможности для импульсной спектроскопии открывают лазеры на свободных FEL является источником электромагнитного излучения на электронном электронах. синхротроне. FEL преобразует релятивистские ГэВ электроны в электромагнитное излучение (фотоны). Преобразование происходит в ондуляторе (от англ. toundulate двигаться волнообразно). В магнитном поле ондулятора импульсы ускоренных электронов преобразуются в когерентные импульсы электромагнитного излучения. Энергия фотонов зависит от энергии релятивистских электронов и параметров ондулятора. Из-за высокой когерентности и интенсивности (10¹⁴ фотонов в импульсе), FEL называется лазером, хотя он не имеет активной среды и не создает индуцированное излучение. В настоящее время на ускорителях по всему миру имеются более тридцати FEL с излучением в разных диапазонах спектра. Так FEL, установленный в Дубне (Россия), излучает в миллиметровом диапазоне. Самое коротковолновое излучение в настоящее время имеется на Европейском XFEL (рентгеновский FEL), который находится в DESY (Гамбург, Германия). Длина волны излучения XFEL достигает 0.05 нм (25 кэВ), это разрешающая способность, сопоставимая с размерами структуры атомов.

В 2020 году на немецком электронном синхротроне DESY закончиликрупный международный проект по созданию лазера на свободных электронах в диапазоне мягкого рентгеновского излучения FLASH2 (*Freie-Elektronen-Laseram Synchrotron Hamburg*). FLASH2 открыл вторую линию FEL для экспериментов (Puc. 3) [2, 3]. FLASH2 связан с линейным ускорителем для создания ГэВ электронов, которые в магнитном поле ондулятора преобразуются в мягкое рентгеновское излучение. Короткие импульсы электронов с энергией от 0.4 до 1.25 ГэВ создают когерентные мягкие в рентгеновские лучи с энергией от 14 до 310 эВ (длина волны от 90 до 4 нм). Длительность фотонных импульсов составляет от 10 до 200 фс, а средняя энергия составляет от 1 до 1000 мкДж (от 10^{11} до 10^{14} фотонов на импульс). FLASH2 открывает новые возможности для уникальных экспериментов в области физики быстро протекающих процессов.

Рисунок 3 – FLASH синхротрон в Гамбурге: линейный ускоритель электронов (*Linearaccelerator*) ускоряет электроны до энергии 1.25 ГэВ, испускающие электромагнитное излучение в магнитном поле ондулятора (*Undulator*) [2, 3].

3. Спектроскопия на FLASH2

Ультрабыстрая лазерная спектроскопия в течение многих лет развивалась в Институте ядерной физики Общества Макса Планка в Гейдельберге под руководством профессора Томаса Пфайфера (*ThomasPfeifer*) [4]. Группа профессора Пфайфера расширила свои эксперименты на FLASH2 в Гамбурге, что открыло новые возможности для исследования релаксации возбужденных электронных состояний в молекулах. Профессор Пфайфер по этому поводу отмечает: «Электронные процессы измеряются в очень малой шкале времени в атомах и молекулах, и эти процессы протекают очень быстро. В твердых телах эти процессы замедляются. В атомах и молекулах возбуждения релаксируют в диапазоне аттосекунд» [4].

eISSN 2663-1296 Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Физика. Астрономия сериясы, 2022, Том 138, №1 Вестник ЕНУ им. Л.Н. Гумилева. Физика. Астрономия, 2022, Том 138, №1

Рисунок 4 – Дийодметан CH $_2$ I $_2$: структурная модель (a) и химические связи (б); электронная структура атома йода (в)

Группа в качестве объекта выбрала дийодметан CH_2I_2 - бесцветную жидкость, которая очень чувствительно реагирует на свет с последующей ионизацией и диссоциацией (рис.4). Целью группы было исследование релаксации высоких электронных состояний при возбуждении мягким рентгеном, в том числе ионизации и диссоциации молекул. Для возбуждения использовалось излучение FLASH2 в диапазоне около 50 эВ ($\lambda \approx 25$ нм; Рис.5). Возбуждался переход 4d электрона атома йода (4d $_{5/2-\sigma_*}$), d электроны имеют более высокую энергию и приводят к ионизации и диссоциации молекулы. Релаксация изучалась в фемтосекундном диапазоне, результаты опубликованы в журнале Phys.Rev. X [5].

Рисунок 5 – Схема экспериментов с лазеромна свободных электронах FLASH2: лазерный импульс I(ω) разделяется на два импульса с переменной задержкой Δt_i , которые попадают на образец, I'(ω) – измеренный сигнал. Измерения проводится в диапазоне энергий ~ 50 эВ [5].

Возбуждение во время первого импульса приводит к ионизации и диссоциации молекулы CH_2I_2 (Рис.6). Изменение возбужденного состояния молекулы CH_2I_2 было проверено путем измерения поглощения (Рис.6В), четко заметного спустя ~ 200 фс после возбуждения. Изменения в молекулярной структуре, определенные по спектрам поглощения, были подтверждены теоретическими расчетами профессора Александра Кулефа (*Alexander Kuleff*, Институт физической химии Университета Гейдельберга). В целом эта работа стала решающим шагом в использовании лазеров на свободных электронах для измерений времени релаксации возбужденных состояний атомов и молекул.

4. Лазер на свободных электронах открывает мир ядерной спектроскопии

Группа профессора Пфайфера использовала лазерную спектроскопию для атомной физики и физики твердого тела. Эти исследования охватывают спектральный диапазон от видимого света до мягкого рентгеновского диапазона с энергиями фотонов в несколько десятков электронвольт. Чтобы войти в диапазон ядерной спектроскопии, необходимо когерентное излучение с энергией несколько килоэлектронвольт. Ядра атомов имеют квантовую структуру с возбужденными состояниями, аналогично электронной оболочке атомов, но с энергией в

eISSN 2663-1296 Bulletin of L.N. Gumilyov ENU. PHYSICS. ASTRONOMY Series, 2022, Vol. 138, №1

Рисунок 6 – А - Структурные модели СН $_2$ I $_2$: основное состояние (а), состояние после ионизации СН $_2$ I $_2^+$ (b) и диссоциации СН $_2$ I... I $^+$ (c), расстояния даны в Å. В - Спектр поглощения СН $_2$ I $_2^-$ в основном состоянии (черная кривая) и расчетные спектры в основном состоянии (синяя кривая), в ионизированном состоянии (красная кривая) и в диссоциированном состоянии (зеленая кривая) [5].

области кэВ и больше. Возбуждение атомных ядер приводит к переходам с излучением гаммаквантов (*γ*-лучей). В последние годы FEL на французском синхротроне в Гренобле открыл возможности исследования ядерных процессов.

В этом году группа профессора Пфайфера в сотрудничестве с французским синхротроном в Гренобле (ESRF), Научным центром DESY(Гамбург) и Институтом Гельмгольца Университета Йены заверпила уникальный эксперимент по возбуждению ядер атомов железа (⁵⁷ Fe), результаты опубликованы в журнале Nature [6]. Эксперимент открыл новые возможности для спектроскопии атомных ядер и дал впервые возможность измерять интервал времени задержки $\Delta t \approx 10^{-20}$ с (это десять зептосекунды, 1 зс = 10^{-21} с). В статье было так много новостей, что рецензии в редакции потребовали два года (подана в декабре 2018 года и принята для печати в январе 2020 года)! Такое длительное время типично для революционных открытий.

Рисунок 7 – Схема эксперимента когерентного рентгеновского возбуждения атомных ядер ⁵⁷ F. Энергия импульсов 14.4 кэВ ($\lambda = 0,086$ нм). Первый образец ⁵⁷ Fe служит для создания двойного когерентного рентгеновского импульса. Для этого образец ⁵⁷ F должен быть перемещен на короткое расстояние ($\Delta x \leq \lambda/2$) во время возбуждающего импульса ($\tau \approx 10 \, \text{фc} = 10^{-14} \, \text{c}$). Созданный когерентный двойной импульс индуцирует во второй пробе ⁵⁷ F два когерентных состояния, сдвинутых во времени на Δt . Возбуждение ядро ⁵⁷ F во второй пробе ⁵⁷ F два когерентных состояния, сдвинутых во времени на Δt . Возбуждение ядро ⁵⁷ F во второй пробе излучает γ -излучение, которое обнаруживается по интерференции. Эксперимент впервые продемонстрировал возбуждение атомного ядра когерентным рентгеновским излучением. Удалось создать и измерить сдвиг $\Delta t \approx 10$ зс $= 10^{-20} \, \text{c}$ [6].

Эксперимент проводился на синхротроне ESRF в Гренобле под руководством профессора Эверса (*Jorg Evers*, Институт Макса Планка для ядерной физики). Это был первый эксперимент на синхротроне для получения и измерения импульсов длительностью порядка зептосекунд. Синхротрон в Гренобле создает рентгеновские импульсы с энергиями в области

eISSN 2663-1296 Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Физика. Астрономия сериясы, 2022, Том 138, №1 Вестник ЕНУ им. Л.Н. Гумилева. Физика. Астрономия, 2022, Том 138, №1

килоэлектронвольт со средней длиной импульса $\tau \approx 10 fs~(10^{-14}~{
m c})$. Энергия квантов составляла 14.4 кэВ (длина волны 0.086 нм), что соответствует резонансному переходу в ядре 57 Fe с последующим испусканием γ - лучей. Использовался образец 57 Fe в твердом состоянии, что обеспечивало эмиссию γ -лучей с малой полушириной за счет эффекта Mёссбауера [7]. Схема эксперимента показана на Рис.7. Короткий импульс рентгеновского излучения от синхротрона ($\tau \approx 10$ фс $= 10^{-14}$ с) возбуждает первую пробу ⁵⁷ Fe, которая служит для создания двойного импульса рентгеновских лучей (aнгл. doublepulse). Чтобы создать двойной импульс, первый образец должен был слегка передвинут в течение рентгеновского импульса. Сдвиг должен быть маленьким, на длину меньше длины волны рентгеновского излучения ($\Delta x \approx \lambda/2 \leq 0.043$ нм = 4.3×10^{-11} м), что сопоставимо с радиусом атома Для этого первый образец ⁵⁷ Fe помещался на пластинке пъезоэлектрика. водорода! Смещение образца на $\Delta x = \lambda/2$ создавало временную задержку $\Delta t \approx 140$ зс (1.4×10^{-19}) В эксперименте удалось создать маленькие смещения во время короткого импульса c). синхротрона, которые дали $\Delta t \approx 10^{-20}$ с = 10 зс! Весь процесс генерации когерентных γ лучей (от формирования двойного рентгеновского импульса до возбуждения индуцированных переходов во втором ⁵⁷ Fe образце) осуществлялся в течение времени $\Delta t \approx 10$ фс. Два когерентных рентгеновских импульса индуцируют во второй пробе ⁵⁷ Fe возбужденные ядра с последующим излучением с γ - лучей. Когерентность индуцированных рентгеновских лучей наблюдалась по интерференции ([6] рис.2 и 4). Достигнутое когерентное возбуждение атомных ядер и устойчивость двойных рентгеновских импульсов открывают много применений в спектроскопии атомных ядер.

Список литературы

- 1 Emilio Segre, Die Groben Physiker und ihre Entdeckungen: von Rontgen bis Weinberg, Piper Munchen, 2004.
- 2 Honkavaara K., Faatz B., Feldhaus J., Schreiber S., Treusch R., Vogt M. FLASH: FIRST SOFT X-RAY FEL OPERATING TWO UNDULATOR, Proceedings of FEL, 635 639 (2014).
- 3 Free-electron laser FLASH. [Электронный ресурс] URL: https://flash.desy.de (дата обращения: 06.12.2021)
- 4 Welt der Physik: Attosekundenspektroskopie. [Электронный ресурс] URL: https://www.weltderphysik.de/gebiet/teilchen/atome-und-molekuele/atome (датаобращения: 06.12.2021)
- 5 Marc Rebholz et al., All-XUV Pump-Probe Transient Absorption Spectroscopy of the Structural Molecular Dynamics of Di-iodomethane, Phys. Rev. X 11, 031001 (2021).
- 6 Heeg K.P., Kaldun A., Strohm C., Ott Ch., Subramanian R., Lentrodt D., Haber J., Hans-Christian Wille, Goerttler S., Ruffer R., Keitel Ch.H., Rohlsberger R., Pfeifer Th.& Jorg Evers. Coherent X-ray?optical control of nuclear excitons, Nature, 590, 401(2021).https://doi.org/10.1038/s41586-021-03276-x
- 7 Rudolf L. Mossbauer, The discovery of the Mossbauer effect, Hyperfine Interactions, 126, 1–12 (2000).

Сведения об авторах:

Шварц К. - академик Латвийский академии наук, доктор физико-математических наук, профессор GSI (Центр по изучению тяжёлых ионов имени Гельмгольца), Дармштат, Германия.

Даулетбекова А.К. - кандидат физико-математических наук, профессор кафедры технической физики, Евразийский национальный университет им. Л.Н. Гумилева, ул. Кажымукана, 13, Нур-Султан, Казахстан.

Сорокин М. - кандидат физико-математических наук, старший научный сотрудник Национального исследовательского центра «Курчатовский институт», Москва, Россия.

Schwartz K. - Academician of the Latvian Academy of Sciences, Doctor of Physical and Mathematical Sciences, Professor of GSI (Helmholtz Centre for Heavy Ion Research), Darmstdt, Germany.

Dauletbekova A. - Candidate of Physical and Mathematical Sciences, Professor of the Department Technical Physics, L.N. Gumilyov Eurasian National University, 13 Kazhymukhan str., Nur-Sultan, Kazakhstan.

Sorokin M. - Candidate of Physical and Mathematical Sciences. Senior Researcher at the National Research Centre "Kurchatov Institute", Moscow, Russia.