Л.Н. Гумилев атындағы Еуразия ұлттық университетінің хабаршысы. Физика. Астрономия сериясы, 2021, том 134, №1, 14-21 беттер http://bulphysast.enu.kz, E-mail: vest_phys@enu.kz

МРНТИ: 29.19.31

А.А. Ногай¹, С.Ю. Стефанович², Ж.М. Салиходжа¹, А.С. Ногай³

¹ Евразийский Национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия

Московский государственный университет им. М.Б. Ломоносови, тоскви, Госсия

³ Казахский агротехнический университет им. С. Сейфуллина, Нур-Султан, Казахстан (E-mail: nogay06@mail.ru¹)

Проводящие и диэлектрические свойства поликристалла Na $_{3}$ Cr $_{2}$ (PO $_{4}$) $_{3}$

Аннотация: в данной статье изучены особенности структуры, проводящих и диэлектрических свойств поликристалла $\operatorname{Na}_3\operatorname{Cr}_2(\operatorname{PO}_4)_3$. Установлены отличительные особенности температур фазовых переходов между моно- и поликристаллами $\operatorname{Na}_3\operatorname{Cr}_2(\operatorname{PO}_4)_3$, хотя проводящие и диэлектрические свойства образцов практически мало отличаются друг от друга. Установлена связь между структурными изменениями, проводящими и диэлектрическими свойствами поликристалла $\operatorname{Na}_3\operatorname{Cr}_2(\operatorname{PO}_4)_3$. Даны модели, объясняющие диэлектрический характер низкотемпературной α – фазы $\operatorname{Na}_3\operatorname{Cr}_2(\operatorname{PO}_4)_3$ и суперионные свойства высокотемпературной γ – фазы.

Ключевые слова: поликристалл, ионная проводимость, фазовые переходы, поляризация, диэлектрическая и суперионная фазы.

DOI: https://doi.org/10.32523/2616-6836-2021-134-1-14-21 Поступила: 15.12.2020/ Допущена к опубликованию: 13.01.2021

1. Введение. Многие вещества из семейства NASICON обладают практически ценными свойствами, поэтому важно дальнейшее изучение особенностей появления проводящих и диэлектрических свойств образцов данного семейства. Согласно [1] монокристалл Na₃ Cr₂ (PO₄)₃ является антисегнетоэлектриком в низкотемпературной α – фазе и суперионным проводником в высокотемпературной γ – фазе. Однако нет данных по исследованию поликристалла Na₃ Cr₂ (PO₄)₃, хотя поликристаллы более востребованы для практического использовани ввиду простоты технологии его получения. Целью настоящей работы является исследование проводящих диэлектрических свойств поликристалла Na₃ Cr₂ (PO₄)₃ и установление различий структурных параметров, проводящих диэлектрических свойств между моно- и поликристаллическими образцами.

2. Методика эксперимента. Поликристаллы Na₃ Cr₂ (PO₄)₃ были получены двухстадийным твердофазным синтезом. Для синтеза образцов использовали следующие соли и окислы: Na₂ CO₃, NH₄ H₂ PO₄, Cr₂O₃. Температура первого отжига составляла 1070 K, а второго - 1170 K. Длительность процесса каждой стадии твердофазного синтеза образцов составляла 8 часов. Однофазность и структурные параметры поликристалла Na₃ Cr₂ (PO₄)₃ были изучены рентгенографическим методом с помощью дифрактометра ДРОН-3 с CuK α -излучением. Нелинейно-оптические свойства поликристалла определялись методом генерации второй оптической гармоники (ГВГ). Проводящие и диэлектрические свойства образцов определялись с помощью импедансметра ВМ-507 в интервалах частот 5 – 500000 Hz, а измерения диэлектрических параметров на частоте 3 ГГц проводились с помощью прибора РИПСЭ-М. Все измерения проводились в температурном интервале 295 – 575. Для создания электродов на образцы наносили палладий.

3. Результаты и обсуждения.

3.1 Поликристаллы Na₃ Cr₂ (PO₄)₃ и результаты структурных исследований.

Синтезированные поликристаллы Na₃ Cr₂ (PO₄)₃ были темно-зеленого цвета, имели форму таблеток диаметром 8 mm и толщиной 1,5 mm. Рентгенографически было

установлено, что параметры элементарной ячейки α – Na₃ Cr₂ (PO₄)₃ были обнаружены на поликристаллических образцах: a = 21,62(3) Å, b = 8,64(1) Å, c = 30.55(6) Å, γ = 90.4(1)0. Эти данные близки и согласуются с литературными данными [1], установленными для монокристаллов с моноклинной элементарной ячейкой α –Na₃ Cr₂ (PO₄)₃, c пр. гр. P21/n и параметрами a = 21.18(4) Å, b = 8.65(1) Å, c = 30.56(8) Å, γ = 90.5(1) Также в работе [1] было установлено, что монокристалл характеризуется сверхструктурой типа c = 2c0 вдоль оси с. Причем в работе [2] сообщается, что структура монокристалла α –Na₃ Cr₂ (PO₄)₃ обладает моноклинным искажением и сверхструктурной кристаллической ячейкой, которую можно записать так:

$$\cdots \vec{a} = \vec{a}_1 + \vec{c}_1; \cdots \vec{b} = \vec{b}_2; \cdots \vec{c} = 2\vec{a}_1 + 4\vec{c}_1 \tag{1}$$

3.2 Результаты исследования теста на нецентросимметричность и ионной проводимости поликристалла Na $_3$ Cr $_2$ (PO $_4$) $_3$

Тест на нецентросимметричность поликристаллов ${\rm Na}_{\,3}\,{\rm Cr}_{\,2}\,({\rm PO}_{\,4}\,)_{\,3}\,,$ проведенный с использованием неодимового лазерного излучения показал отсутствие сигнала ГВГ от образцов, что позволяет заключить об отсутствии поляризованности в кристалле или о наличии скомпенсированных дипольно-упорядоченных состояний. Эти результаты совпадают с данными полученными в работе [1] для монокристаллов. Путем использования импедансного метода были получены проводимости (σ) кристаллитов поликристаллических образцов Na₃Cr₂ (PO₄)₃. Температурная зависимость проводимости кристаллитов для $Na_3 Cr_2 (PO_4)_3$ представлена на рис. 1 а. На зависимости $\sigma(T)$ можно видеть четыре линейных участка, вероятно, соответствующих α , α' , β , γ -фазам Na₃ Cr₂ (PO₄)₃. Причем близкие зависимости $\sigma(T)$ установлены в работе [1] для монокристалла вдоль кристаллографической оси с, полученным раствор-расплавным методом (см. рис. 1b). Однако для монокристаллов Na₃ Cr₂ (PO₄)₃ фазовые переходы четко выделяются в виде скачков на зависимости σ (T). В случае поликристалла фазовые переходы представлены на зависимости $\sigma\left(\mathrm{T}
ight)$ в виде сглаженных ступенек. Сравнительный анализ зависимости $\sigma\left(\mathrm{T}
ight)$ образцов показал, что середина сглаженных ступенек соответствует величине температур фазовых переходов, установленных с помощью монокристаллических образцов. По-видимому, такое различие в поведении фазовых переходов между моно- и поликристаллами Na ₃ Cr ₂ (PO ₄) ₃ связано с анизотропностью свойств монокристаллов по отношению к изотропности для поликристаллов. Согласно [1], ход линейных участков на зависимостях σ (T) для монокристаллического образца представленных на рис. 1b подчиняется закону Аррениуса. Поэтому зависимости $\sigma(T)$ на рис. 1а для поликристаллического образца также могут описываться законом Аррениуса.

Путем анализа зависимости σ (T) для кристаллитов поликристалла Na₃ Cr₂ (PO₄)₃ были определены параметры, характеризующие фазовые переходы и проводящие свойства различных фаз, которые приведены в табл. 1.

Таблица 1 — Параметры, характеризующие и
онную проводимость и фазовые переходы для кристаллитов поликристал
ла Na $_3$ Cr $_2$ (PO $_4$) $_3$

		Ионная проволимость	Энергия активации	Температуры фазовых
Соединение	Фазы			
		σ , ($\Omega \text{ sm}$)-1	$\Delta E, ev$	переходов, к
$Na_3Cr_2(PO_4)_3$	α	$6.10^{-7} = 295 \text{ K}$	0.64	$T_{\alpha \to \alpha'} = 348$
поликристалл	α'	$8.4 \cdot 10^{-6} = 370 \text{ K}$	0.94	$T_{\alpha' \to \beta} = 411$
	β	$2.5 \cdot 10^{-4} = 410 \text{ K}$	0.81	$_{eta ightarrow \gamma} = 439$
	γ	$3.8 \cdot 10^{-3} = 570 \text{ K}$	0.39	

В табл. 2 приведены аналогичные параметры для монокристалла Na $_3$ Cr $_2$ (PO $_4$) $_3$, представленные в работе [1].

eISSN 2663-1296 Bulletin of L.N. Gumilyov ENU. PHYSICS. ASTRONOMY Series, 2021, Vol. 134, №1

Рисунок 1 – Температурные зависимости ионной проводимости фосфата натрия-хрома: а) для кристаллитов поликристалла; b) для монокристалла (данные работы [1]). Участки, относящиеся к α –, α' –, β –, γ –фазам, выделены на зависимости σ (T) штрихпунктирными линиями

Таблица 2 — Параметры, характеризующие ионную проводимость и фазовые переходы для монокристалла Na₃ Cr₂ (PO₄)₃ (данные в работе [1]).

Соединение	Фазы	Ионная проводимость	Энергия активации	Температуры фазовых
		σ , (Ω sm)-1	$\Delta E, eV$	переходов, К
$Na_3Cr_2(PO_4)_3$	α	$4 \cdot 10^{-7} = 295 \text{ K}$	0.62	$T_{\alpha \to \alpha'} = 348$
монокристалл	α'	$7.9 \cdot 10^{-6} = 370 \text{ K}$	0.92	$T_{\alpha' \to \beta} = 411$
	β	$1.9 \cdot 10^{-4} = 410 \text{ K}$	0.79	$_{eta ightarrow \gamma} = 439$
	γ	$3.63 \cdot 10^{-3} = 570 \text{ K}$	0.39	

Как видно из таблиц 1 и 2, параметры, характеризующие проводящие свойства и температуры фазовых переходов поли- и монокристаллов Na 3 Cr 2 (PO 4) 3, незначительно отличаются друг от друга. Четко выделяются общие закономерности поведения проводящих свойств для обеих видов кристаллов. Данные таблиц 1 и 2, а также данные о наличии сверхструктурных искажений, описанные формулой (1) и центросимметричности в α – Na₃ Cr₂ (PO₄)₃ подтверждают вывод об антисегнетоэлектрическом характере дипольного упорядочения низкотемпературной α – фазы, сделанной в работе [1]. Вероятно, повышение проводимости при последующих фазовых переходах связано с повышением симметрии кристаллического каркаса в Na₃ Cr₂ (PO₄)₃. Возможно, при фазовом переходе $\beta \rightarrow \gamma$ происходит полная симметризация кристаллического каркаса, т.к. данные проводящих свойств $\gamma - Na_3 Cr_2 (PO_4)_3$ позволяют рассматривать его как суперионный проводник (см. табл. 1 и 2).

3.3Результаты исследования диэлектрических свойств поликристалла $Na_3 Cr_2 (PO_4)_3$.

Диэлектрические проницаемости (ε) и тангенсы углов диэлектрических потерь (tg δ) образцов были определены путем анализа импеданса $Z^{*}(\omega)$ поликристаллов Na $_{3}$ Cr $_{2}$ (PO $_{4}$) $_{3}$. Температуры фазовых переходов $T_{\alpha \to \beta}$ для поликристалла Na₃ Cr₂ (PO₄)₃. были определены из температурных зависимостей диэлектрических проницаемостей ε (T), приведенных на рис. 2 а. Параметры тепловой релаксационной поляризации определялись путем анализа зависимости $tg \delta(\omega)$ для поликристалла $Na_3 Cr_2 (PO_4)_3$, представленного на рис. 3 а. На рис. 2 проведены зависимости ε (T) для поликристалла Na₃ Cr₂ (PO₄)₃, измеренные на частотах: 500 kHz (см. рис. 2 а) и 3 ГГц (см. рис. 2 b). Наблюдаемые аномалии ε на зависимостях ε (T) на рис. 2 (a, b) показывают, что при T= 348 K наблюдаются фазовые переходы $\alpha \to \alpha'$.

Рисунок 2 — Температурные зависимости диэлектрической проницаемости ε (T): a) на частоте 500 кГц и b) на частоте 3 ГГц для поликристалла Na $_3$ Cr $_2$ (PO $_4$) $_3$

Результаты показывают, что на частоте 3 ГГц проявляется более ярко выраженная аномалия на зависимости $\varepsilon(\mathrm{T})$ и с более низкими значениями диэлектрической проницаемости. Эти данные согласуются с законом Кюри-Вейса для спонтанно-поляризованных кристаллов. Напротив, на частоте 500 kHz аномалия ε на зависимости ε (T) представлена в виде ступеньки, а значения диэлектрической проницаемости на порядок выше, чем в случае более высокочастотных измерений. Вероятно, при измерении зависимости ε (T) на частоте 3 ГГц исключаются влияния побочных кинетических явлений на значение ε . Следует отметить, что низкотемпературная фаза для поликристалла α –Na $_3$ Cr $_2$ (PO $_4$) $_3$ характеризуется стабильно низкими значениями диэлектрической проницаемости, характерных для дипольноупорядоченных фаз. Рост диэлектрической проницаемости наблюдается только в частично дипольно-разупорядоченной фазе lpha' –Na $_3$ Cr $_2$ (PO $_4$) $_3$. На рис. 3 а) представлены зависимости $\mathrm{tg}\,\delta\,(\,\omega\,)$ для поликристалла lpha' –Na $_3\,\mathrm{Cr}_{\,2}\,(\mathrm{PO}_{\,4}\,)_{\,3}$, которые указывают на наличие процессов тепловой релаксационной поляризации. Согласно работе [1], на монокристалле α' –Na $_3$ Cr $_2$ (PO $_4$) $_3$ также была установлена тепловая релаксационная поляризация, четко проявляющаяся на зависимости $tg \delta(\omega)$ (рис. 3 b), которая была описана моделью Дебая. Сравнительный анализ этих зависимостей показал, что несмотря на качественное сходство зависимостей $\operatorname{tg} \delta(\omega)$ обеих образцов, значения $\operatorname{tg} \delta$ больше при измерении на частоте 500 kHz. Причиной этому может быть влияние проводимости поликристалла на α' –Na $_3$ Cr $_2$ (PO $_4$) $_3$ на значение $tg \delta$.

Рисунок 3 – Частотные зависимости тангенсов углов диэлектрических потерь для: а) поликристалла α' – Na 3 Cr 2 (PO 4) 3 и b) монокристалла α' – Na 3 Cr 2 (PO 4) 3 (по данным работы [1])

По данными приведенным на рис. 3 а нам удалось получить параметры процесса релаксации в поликристалле α' –Na₃ Cr₂ (PO₄)₃, близкие к параметрам для монокристалла, рассчитанных в работе [1]. По углу наклона, образуемых максимумами tg δ на зависимости tg $\delta(\omega)$ была определена энергия активации релаксации (высота потенциального барьера). По методике, представленной в работе [1, 3] проведена оценка возможности описания процесса релаксации для поликристаллов α' –Na₃ Cr₂ (PO₄)₃ по модели Дебая. Для определения времени релаксации (τ) было использовано выражение [2, 4] :

$$\tau = \frac{1}{2}\nu exp\left(\frac{E}{kT}\right);\tag{2}$$

где ν — частота приложенного электрического поля; Е — высота потенциального барьера; k - постоянная Больцмана. Путем построения диаграммы Коула-Коула для поликристаллов α' —Na₃ Cr₂ (PO₄)₃ были установлены статические и оптические диэлектрические проницаемости. В таблице 3 приведены структурные данные, а также диэлектрические параметры, характеризующие релаксационную поляризацию в поликристалле α' —Na₃ Cr₂ (PO₄)₃.

Таблица 3 — Параметры процесса релаксации и структуры поликристалла α' – Na $_3$ Cr $_2$ (PO $_4$) $_3$

$Na_3Cr_2(PO_4)_3$	Фазы			
Параметры	α	α'	β	γ
Симметрия	$P2_1/n$	$P2_1/n$	R3C	R3C
Коэф-т распределения (α)	-	0.066	0	0
e ₀	-	140	320	100
e_{ω}	-	3600	1980	1650
Энергия активации (Е), эВ	-	0.398	0.280	0.22
Время релаксации (τ) , с	-	0.066	0	0

Для сравнения в таблице 4 приведены значения параметров, характеризующих релаксационные явления в монокристалле α' –Na $_3$ Cr $_2$ (PO $_4$) $_3$, которые установлены в работе [1].

$Na_3Cr_2(PO_4)_3$	Фазы				
Параметры	α	α'	β	γ	
Симметрия	$P2_1/n$	$P2_1/n$	R3C	R3C	
Коэф-т распределения (α)	-	0.062	0	0	
e ₀	-	120	280	80	
e_{ω}	-	3200	1880	1600	
Энергия активации (Е), эВ	-	0.393	0.262	0.213	
Время релаксации (τ) , с	-	$3.5 \ 10^{-3}$	$1.3 \ 10^{-5}$	$1.7 \ 10^{-6}$	
	2,17	2.21	-	2.26	
Расщепление позиций Na2					
	0,83; 1,33	0.84; 1.37	-	-	

Таблица 4 — Параметры, характеризующие релаксационную поляризацию в монокристалле α' –Na ₃ Cr ₂ (PO ₄) ₃ (по данным работы [1])

Как и в случае монокристаллов [1], релаксаторами в поликристалле являются прежде всего частично разупорядоченные катионы натрия. Из таблиц 3 и 4 видно, что для моно- и поликристаллов α' -Na₃ Cr₂ (PO₄)₃ характерны коэффициенты распределения α = 0.062 и α = 0.066 соответственно, поэтому релаксаторами могут быть частицы с разным временем релаксации в α' – фазе (например, катионы натрия и частично разупорядоченные скомпенсированные катионы натрия). Для β - и γ – фаз поликристаллов коэффициенты распределения α равны нулю, как и в случае монокристаллов, что показывает об однородности сорта частиц (например, катионов натрия) в обеих случаях. Для моно- и поликристаллов β – и γ – фаз Na₃ Cr₂ (PO₄)₃ характерны более быстрые процессы релаксации ввиду достаточной структурной разупорядоченности.

3.4 Модель потенциального барьера для α – Na $_3$ Cr $_2$ (PO $_4$) $_3$

Результаты наших экспериментальных исследований структуры, проводящих и диэлектрических свойств α –Na $_{3}$ Cr $_{2}$ (PO $_{4}$) $_{3}$ и данные работ [1, 4] позволяют заключить, что катионы натрия представляют собой систему малоподвижных скомпенсированных натриевых диполей в анионном моноклинно-искаженном кристаллическом каркасе (пр. гр. Р2₁./n). Аналогичное распределение нескомпенсированных натриевых диполей имеет место у изоструктурного аналога Na₃ Sc₂ (PO₄)₃ [2, 4, 5]. Наблюдаемую релаксационную поляризацию ионов натрия в поликристаллах α' – фазы Na₃ Cr₂ (PO₄)₃ (рис. 3) можно объяснить частичным разупорядочением части скомпенсированных натриевых диполей в момент фазового перехода $\alpha \to \alpha'$. Образование нескомпенсированных натриевых диполей в α – Na ₃ Sc ₂ (PO ₄) ₃ можно рассматривать как процесс смещения группы катионов натрия на расстояние (l) от своих наиболее вероятных положений равновесия в ромбоэрической структуре [Sc₂ (PO₄)₃]3-3 ∞ под действием моноклинного искажения (пр. гр. Вв). Вероятно, причиной образования скомпенсированных диполей в случае α –Na $_3$ Cr $_2$ (PO $_4$) $_3$ является удвоение объема элементарной ячейки, каждая из которых содержит противоположено ориентированные натриевые диполи. На этом рисунке 4 а) схематически представлен фрагмент потенциального барьера для α – Na₃ Cr₂ (PO₄)₃. Возможно образование скомпенсированных натриевых диполей (изображенных двумя противоположено направленными дипольными моментами \vec{P}) из-за факта удвоения элементарной ячейки [2]. В этом случае удобно изобразить скомпенсированный статистический натриевый диполь в виде встречно-направленных диполей (см. рис. 4 б).

На основе модели потенциального рельефа для суперионной фазы γ -Na₃Sc₂ (PO₄)₃, предложенного в [6], можно изобразить потенциальный рельеф вдоль одномерного канала проводимости для γ -Na₃Cr₂ (PO₄)₃ так, как представлено на рис. 5.

Результаты экспериментов показывают, что при фазовых переходах $\alpha \to \alpha', \alpha' \to \beta, \beta \to \gamma$ в моно- и поликристаллах Na₃ Cr₂ (PO₄)₃ происходят последовательные процессы

Рисунок 4 – а) Схематическое изображение фрагмента потенциального барьера с четырьмя положениями равновесия (из-за удвоения элементарной ячейки) в α – Na ₃ Cr ₂ (PO ₄) ₃ (b) и суммарный натриевый диполь с противоположно направленными дипольными моментами \vec{P} .

Рисунок 5 – Схематическое изображение потенциальных барьеров вдоль одномерного канала проводимости у-Na 3 Cr 2 (PO 4) 3. Е - высота потенциальной ямы в канале проводимости, а кружками показано статистическое распределение катионов

структурного разупорядочения, приводящие к кардинальным изменениям проводящих и диэлектрических свойств. Для α – и α' – фаз Na₃ Cr₂ (PO₄)₃ характерны медленные кинетические процессы, связанные с дипольным упорядочением катионов натрия, а с появлением разупорядоченных катионных подрешеток в β – и γ – фазах фосфата натрияхрома реализуются быстрые и кинетические процессы.

Заключение. Резюмируя экспериментальные результаты можно заключить:

1) Моно- и поликристаллы Na₃ Cr₂ (PO₄)₃ обладают близкими структурными параметрами, проводящими и диэлектрическими свойствами. Резюмируя экспериментальные результаты можно заключить:

2) Подтверждено, что поликристалл α –Na 3 Cr 2 (PO 4) 3 обладает антисегнетоэлектрическим типом дипольного упорядочения, а α' –Na $_3$ Cr $_2$ (PO $_4$) $_3$ является диэлектриком. что в поликристаллах α' –Na 3 Cr 2 (PO 4) 3 наблюдается тепловая Подтверждено, релаксационная поляризация дебаевского типа, как в монокристаллах. Резюмируя экспериментальные результаты можно заключить:

3) Результаты исследования проводящих свойств поликристаллов $\gamma - \operatorname{Na_3Cr_2}(\operatorname{PO_4})_3$ практически совпадают с результатами изучения монокристаллов и позволяют говорить о суперионном характере проводимости. Резюмируя экспериментальные результаты можно заключить:

4) Для объяснения диэлектрических и проводящих свойств Na₃Cr₂(PO₄)₃ представлены модели потенциальной ямы для α –Na $_{3}$ Cr $_{2}$ (PO $_{4}$) $_{3}$ и потенциального рельефа канала проводимости для γ –Na₃ Cr₂ (PO₄)₃.

Список литературы

- 1 Nogai A.C., Stefanovich S.Yu., Bush A.A., Uskenbaev D.E., Nogai A.A. Dipole ordering and ionic conductivity in NASICON-like structures such as Na 3 Cr 2 (PO 4) 3 //Physics of the Solid State - 2018. - Vol. 60. - Nº 1. - P. 23 - 30.
- 2 d'Yvoire F., Pintard-Serepel M., Bretey E., de La Rochere M. Phase transition and ionic conductions in 3D selection phosphates // Solid State Ionics. - 1983. - V. 9/10. - P. 851-858.
- 3 Poplavko Yu.M. Physics of dielectrics. Kiev: High School, 1980. 398 c.
- 4 De La Rochere M., d'Yvoire F., Collin G., Boilot J.P. Nasicon TYPE MATARIALS Na 3 M 2 (PO 4) 3 (M=Se, Cr, Fe) Na+ - Na+ CORRLATIONS AND PHASE TRANSITIONS // Solid State Ionics. - 1983. - V. 9/10. -P. 825–828.
- 5 Nogai A.C., Stefanovich S.Yu., Bush A.A., Uskenbaev D.E., Nogai A. A. Dipole ordering and ionic conductivity in NASICON-like structures such as Na 3 Sc 2 (PO 4) 3 // Physics of the Solid State. – 2019. - Vol. 61. - № 11. -P. 1985-1992.
- 6 Nogai A.C., Young Hub and Yugay K.N. Ionic and Superionic Conduction in NASICON-Like Structures of the Na ₃ Sc ₂ (PO ₄) ₃ Type // Physics of the Solid State. - 2005. - V. 47. - № 6. - P. 1076-1082.

eISSN 2663-1296 Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Физика. Астрономия сериясы, 2021, Том 134, №1

Вестник ЕНУ им. Л.Н. Гумилева. Физика. Астрономия, 2021, Том 134, №1

А.А. Ногай 1 , С.Ю. Стефанович 2 , Ж.М. Салиходжа 1 , А.С. Ногай 3

1 Л.Н.Гумилев атындағы Еуразия ұлттық университеті, Нұр-Сұлтан, Қазақстан

² М.В. Ломоносов атындағы Мәскеу мемлекеттік университеті, Мәскеу, Ресей

 3 С.Сейфуллин атындагы Қазақ Агротехникалық университеті. Нұр
-Сұлтан, Қазақстан

Na $_3$ Cr $_2$ (PO $_4$) $_3\,$ - дегі моно- және поликристалдың диэлектрлік қасиеттері

Аннотация. Мақалада Na ₃ Cr ₂ (PO ₄) ₃ поликристалының құрылымын, өткізгіштік және диэлектрлік қасиеттерін зерттелген. Na ₃ Cr ₂ (PO ₄) ₃ бір және поликристалдар арасындағы фазалық ауысулар температураларының айрықша ерекшеліктері анықталды, дегенмен, үлгілердің өткізгіштік және диэлектрлік қасиеттері бір-бірінен іс жүзінде ерекшеленеді. Na ₃ Cr ₂ (PO ₄) ₃ поликристалының құурылымдық өзгерістері, өткізгіштік және диэлектрлік қасиеттері арасында байланыс орнатылды. Na ₃ Cr ₂ (PO ₄) ₃ төмен температуралы α – фазасының диэлектрлік сипатын және жоғары температуралы γ – фазаның супериондық қасиеттері түсіндіру үшін модельдер келтірілген.

Түйін сөздер: бір кристалды, поликристалды, иондық өткізгіштік, фазалық ауысулар, поляризация, диэлектрлік және супериондық фаза.

A.A. Nogai¹, S.Yu. Stefanovich², J.M. Salikhodja¹, A.S. Nogai³

¹ L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan ² Lomonosov Moscow State University, Moscow, Russia ³ Saken Seifullin University, Nur-Sultan, Kazakhstan

Conducting and dielectric properties of mono- and polycrystals Na 3 Cr 2 (PO 4) 3

Abstract. This article studies the structure, conductivity and dielectric properties of polycrystallineNa₃ Cr₂ (PO₄)₃. Distinctive features of the temperature of phase transitions between mono- and polycrystalline Na₃ Cr₂ (PO₄)₃, although the conductive and dielectric properties of the models are practically slightly different from each other. A relationship has been established between structural changes, conductive and dielectric properties of the Na₃ Cr₂ (PO₄)₃ polycrystal. Models are given to explain the dielectric character of the low-temperature α -phase of Na₃ Cr₂ (PO₄)₃ and the superionic properties of the high-temperature γ -phase.

Keywords: polycrystal, ionic conductivity, phase transitions, polarization, dielectric and superionic phases.

References

- 1 Nogai A.C., Stefanovich S.Yu., Bush A.A., Uskenbaev D.E., Nogai A. A. Dipole ordering and ionic conductivity in NASICON-like structures such as Na₃ Cr₂ (PO₄)₃, Physics of the Solid State, 1(60), 23–30 (2018).
- 2 DYvoire F., Pintard-Serepel M., Bretey E., de La Rochere M. Phase transition and ionic conductions in 3D selection phosphates, Solid State Ionics, 9/10, 851–858 (1983).
- 3 Poplavko Yu.M. Fizika dielektrikov [Physics of dielectrics] (Kiev: High School, 1980, 398 p.). [in Russian]
- 4 De La Rochere M., d'Yvoire F., Collin G., Boilot J.P. Nasicon TYPE MATARIALS Na ₃ M ₂ (PO ₄) ₃ (M=Se, Cr, Fe) Na+ Na+ CORRLATIONS AND PHASE TRANSITIONS, Solid State Ionics, 9/10, 825–828 (1983).
- 5 Nogai A.C., Stefanovich S.Yu., Bush A.A., Uskenbaev D.E., Nogai A. A. Dipole ordering and ionic conductivity in NASICON-like structures such as Na ₃ Sc ₂ (PO ₄) ₃, Physics of the Solid State, 11(61), 1985-1992 (2019).
- 6 Nogai A.C., Young Hub and Yugay K.N. Ionic and Superionic Conduction in NASICON-Like Structures of the Na ₃ Sc ₂ (PO ₄) ₃ Type, Physics of the Solid State, 6(47), 1076 1082 (2005). [in English]

Сведения об авторах:

- Ногай А.А. основной автор, докторант 1-го года обучения физико-технического факультета, кафедры технической физики Евразийского Национального университета им. Л.Н. Гумилева, Нур-Султан, Казахстан.
- Стефанович С.Ю. д.ф-м.н., старший научный сотрудник Федерального государственного унитарного предприятия "Научно-исследовательский физико-химический институт имени Л.Я. Карпова", Москва, Россия.
- *Салиходжа Ж.М.* к.ф-м.н., доцент кафедры технической физики Евразийского Национального университета им. Л.Н. Гумилева, Нур-Султан, Казахстан.
- Ногай А.С. д.ф-м.н., профессор кафедры радиотехники, электроники и телекоммуникации Казахского агротехнического университета им. С. Сейфуллина, Нур-Султан, Казахстан.
- Nogai A.A. **The main author**, 1-st year PhD student of the Faculty of Physics and Technology, Department of Technical Physics, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan.
- Stefanovich S. Yu. Doctor of Physics and Mathematics., Senior Researcher, Federal State Unitary Enterprise "L.Ya. Karpova Research Institute of Physico–Chemical Institute", Moscow, Russia.
- Solikhoja Zh.M. PhD, associate professor of technical physics of the L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan.

Nogai A.S. - Doctor of Physics and Mathematics, Professor of the Department of Radio Engineering, Electronics and Telecommunications of the S. Seifullin University, Nur-Sultan, Kazakhstan.